Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.
Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.