Displaying all 3 publications

Abstract:
Sort:
  1. Alias MA, Buenzli PR
    Biomech Model Mechanobiol, 2018 Oct;17(5):1357-1371.
    PMID: 29846824 DOI: 10.1007/s10237-018-1031-x
    The geometric control of bone tissue growth plays a significant role in bone remodelling, age-related bone loss, and tissue engineering. However, how exactly geometry influences the behaviour of bone-forming cells remains elusive. Geometry modulates cell populations collectively through the evolving space available to the cells, but it may also modulate the individual behaviours of cells. To factor out the collective influence of geometry and gain access to the geometric regulation of individual cell behaviours, we develop a mathematical model of the infilling of cortical bone pores and use it with available experimental data on cortical infilling rates. Testing different possible modes of geometric controls of individual cell behaviours consistent with the experimental data, we find that efficient smoothing of irregular pores only occurs when cell secretory rate is controlled by porosity rather than curvature. This porosity control suggests the convergence of a large scale of intercellular signalling to single bone-forming cells, consistent with that provided by the osteocyte network in response to mechanical stimulus. After validating the mathematical model with the histological record of a real cortical pore infilling, we explore the infilling of a population of randomly generated initial pore shapes. We find that amongst all the geometric regulations considered, the collective influence of curvature on cell crowding is a dominant factor for how fast cortical bone pores infill, and we suggest that the irregularity of cement lines thereby explains some of the variability in double labelling data as well as the overall speed of osteon infilling.
  2. Alias MA, Buenzli PR
    Int J Numer Method Biomed Eng, 2020 01;36(1):e3279.
    PMID: 31724309 DOI: 10.1002/cnm.3279
    Most biological tissues grow by the synthesis of new material close to the tissue's interface, where spatial interactions can exert strong geometric influences on the local rate of growth. These geometric influences may be mechanistic or cell behavioural in nature. The control of geometry on tissue growth has been evidenced in many in vivo and in vitro experiments, including bone remodelling, wound healing, and tissue engineering scaffolds. In this paper, we propose a generalisation of a mathematical model that captures the mechanistic influence of curvature on the joint evolution of cell density and tissue shape during tissue growth. This generalisation allows us to simulate abrupt topological changes such as tissue fragmentation and tissue fusion, as well as three dimensional cases, through a level-set-based method. The level-set method developed introduces another Eulerian field than the level-set function. This additional field represents the surface density of tissue-synthesising cells, anticipated at future locations of the interface. Numerical tests performed with this level-set-based method show that numerical conservation of cells is a good indicator of simulation accuracy, particularly when cusps develop in the tissue's interface. We apply this new model to several situations of curvature-controlled tissue evolutions that include fragmentation and fusion.
  3. Alias MA, Buenzli PR
    Biophys J, 2017 Jan 10;112(1):193-204.
    PMID: 28076811 DOI: 10.1016/j.bpj.2016.11.3203
    The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissue's evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumor growth. Although previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesizing cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and the generation of cusps. We compare this model with in vitro experiments of tissue deposition in bioscaffolds of different geometries. By including the depletion of active cells, the model is able to capture both smoothing of initial substrate geometry and tissue deposition slowdown as observed experimentally.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links