Displaying all 6 publications

Abstract:
Sort:
  1. Bong LJ, Zairi J
    Trop Biomed, 2010 Aug;27(2):317-25.
    PMID: 20962731 MyJurnal
    House flies were collected from April 2007-April 2008 from two poultry farms (Balik Pulau and Juru) in the state of Penang. The resistance level of the first generation offspring was evaluated against DDT, malathion, propoxur, and permethrin using the topical application method. The resistance ratio (RR) of the Balik Pulau strain house flies for propoxur, malathion and DDT ranged from 10.28 to 99.00, 7.83 to 47.01 and 6.05 to 31.10, respectively. Resistance to propoxur and malathion in house fly was attributed to cross resistance to organophosphate insecticides used in the farm. Increased metabolic detoxification might be the mechanism involved in DDT resistance due to excessive application of cypermethrin formulation. The RR of the Juru strain for propoxur, malathion and DDT was in a decreasing pattern throughout the study period, ranging from 5.58 to 83.38, 15.19 to 27.82, and 10.04 to 22.69, respectively. Permethrin appeared to be the most potent insecticide in controlling house fly in both the Balik Pulau (RR=0.50 to 1.96) and Juru poultry farms (RR=0.64 to 2.40). The fluctuations of insecticides resistance in house fly was also found to correlate with climatic factors due to its rapid breeding. Relative humidity exhibited positive correlation indices with the changes in the resistance level for DDT (r=0.481, p<0.05), malathion (r=0.698, p<0.01), and permethrin (r=0.580, p<0.05) in Balik Pulau. Similarly, relative humidity in Juru also showed strong correlation with the RR for DDT (r=0.900, p<0.01), malathion (r=0.762, p<0.05), permethrin (r=0.760, p<0.05), and propoxur (r=0.897, p<0.01).
  2. Bong LJ, Neoh KB, Lee CY, Jaal Z
    Environ Entomol, 2013 Oct;42(5):1013-9.
    PMID: 24331610 DOI: 10.1603/EN13054
    Paederus fuscipes Curtis, a dermatitis linearis causing agent, has received increasing attention from the public, as it poses a serious health threat after mass dispersal into human-dominated areas. Preventive measures against this insect have so far been unsuccessful partly because of limited knowledge about its dispersal pattern. In this study, the dispersal activity of P. fuscipes was studied at infestation-prone residential buildings in Mainland Penang, Malaysia. The dispersal activity of P. fuscipes showed two peaks, that is, from February to April and August to October. Overall, there was no statistical significant correlation between dispersal and climatic parameters, that is, temperature, relative humidity, total rainfall, at all sampling localities. However, dispersal was primarily caused by human activities in rice fields, which accounted for >60% of the variability in dispersal. Particularly, rice harvesting, including straw burning, and cultivation were the major factors triggering P. fuscipes dispersal. These activities presumably disrupted the habitat and normal activities of P. fuscipes and rendered the rice fields unfavorable refuges. In addition, the beetles might also face food shortages after the disturbance of their prey base in the crop fields. The current study provides a predictive tool of P. fuscipes flight periods to ensure insecticide residual spraying is timed in the infestation-prone residential areas before the onset of infestation.
  3. Bong LJ, Neoh KB, Jaal Z, Lee CY
    J Med Entomol, 2013 Sep;50(5):1003-13.
    PMID: 24180105
    The effects of four temperatures (15, 23.5, 28, and 35 degrees C) on the biological characteristics of the rove beetle Paederus fuscipes Curtis were studied, and its cuticular permeability also was measured. Specimens successfully developed to adulthood at each temperature tested, but development time of each preadult stage significantly decreased with increasing temperature. Both egg and L1 stages required at least 80 degree days above a threshold of approximately 10 degrees C to develop to the subsequent stage. The lengthy development time and high survival rate of preadults at 15 degrees C suggests that P. fuscipes can survive in a harsh environment during cold weather by hibernating, and this ability could allow preadults to succeed ecologically in temperate countries. However, adult longevity was short, and no fecundity was recorded at 15 degrees C. At 28 degrees C, P. fuscipes exhibited a high survival rate of adults, which had a longer life span and high fecundity; thus, the population had the highest intrinsic rate of increase (0.0788 +/- 0.0051 d(-1)) and the shortest mean generation time (48.57 +/- 1.43 d) at 28 degrees C. At this temperature, the population might reach a size that could facilitate invasion into residential areas. However, in the absence of a hygric environment, P. fuscipes was unable to survive despite favorable temperature. Unlike in adults and pupae, high cuticular permeability values were found in the larval stages. This indicates that larvae are highly susceptible to desiccation, and it explains why the distribution of P. fuscipes is restricted to moist habitats.
  4. Bong LJ, Neoh KB, Jaal Z, Lee CY
    J Med Entomol, 2012 May;49(3):451-60.
    PMID: 22679850
    The life history characteristics of the rove beetle Paederus fuscipes Curtis were studied under laboratory conditions using three field strains from Malaysia: Desa Wawasan (DW), Sri Pinang (SP), and Ampang Jajar (AJ). The total development time of immature stages differed significantly among the three strains, especially between DW (17.43 +/- 0.16 d), SP (18.60 +/- 0.19 d), and AJ (18.68 +/- 0.22 d). Adult females and males from DW also exhibited a shorter life span, although the difference among strains was not significant. In terms of fecundity, the numbers of eggs laid per female for DW, SP, and AJ were 121.28 +/- 15.98, 127.30 +/- 18.01, and 147.45 +/- 17.12, respectively. Additionally, because of the shorter life span in DW strain, two apparent peaks in age-stage specific fecundity were detected. The beetles compensated for their shorter life span by increasing their reproductive activity to sustain the progeny in the population. The intrinsic rates of increase (r) of P. fuscipes from DW, SP, and AJ were 0.0773 +/- 0.0046 d(-1), 0.0788 +/- 0.0051 d(-1), and 0.0873 +/- 0.0054 d(-1), respectively; and the net reproduction rates (R0) were 40.09 +/- 7.39 offspring, 45.29 +/- 8.74 offspring, and 42.34 +/- 8.25 offspring, respectively. The mean generation time of P. fuscipes from AJ was 43.08 +/- 1.07 d, which was significantly higher than that from DW (47.95 +/- 1.36 d) and SP (48.57 +/- 1.43 d). The total immature development time of P. fuscipes in this study was shorter than values reported in previous studies.
  5. Bong LJ, Neoh KB, Jaal Z, Lee CY
    J Med Entomol, 2015 Jul;52(4):517-26.
    PMID: 26335457 DOI: 10.1093/jme/tjv041
    Although rove beetles (Paederus spp.) play a beneficial role as biological control agents to manage crop pests in agro-ecosystems, their high prevalence in human settings has elevated them to pest status in urban areas. Rove beetles neither bite nor sting, but accidental crushing on human skin causes them to release the toxin paederin, which causes dermatitis linearis. This review integrates currently available knowledge about the issues pertaining to Paederus infestation. For instance, the results of life history studies conducted under different food and temperature regimes are summarized, as they indicate how large a population can be in a habitat to cause massive and widespread infestation and illustrate the physiological traits required to maintain the population at the maximum level even under adverse conditions. In contrast to what is generally reported, we speculate that climatic factors do not necessarily result in Paederus dispersal in temperate regions; instead, habitat disturbance and site unsuitability may be the main factors that lead to massive dispersal to human settings. Factors such as whether dispersers are adaptable to xeric conditions in human settings, the probability that dispersed Paederus mate with the opposite sex, and whether dispersers have adequate nutrient intake to reproduce are considered to evaluate their potential to reproduce in human settings. Finally, the effectiveness of current commercial insecticides, challenges faced in managing infestations, and sustainable management practices are discussed to provide information for long-term control programs.
  6. Bong LJ, Neoh KB, Jaal Z, Lee CY
    J Econ Entomol, 2013 Dec;106(6):2530-40.
    PMID: 24498755
    The contact toxicity of four insecticide formulations (deltamethrin, fipronil, fenitrothion, and imidacloprid) applied on three different substrates (tile, plywood, and concrete) against the adult rove beetle, Paederus fuscipes Curtis, was evaluated. The relative order of speed of killing effects was as follows: deltamethrin > imidacloprid > fipronil > fenitrothion. Although deltamethrin showed the fastest action against P. fuscipes, the recovery rate of rove beetles at 48 h posttreatment was moderate (approximately 25%) on the tile surface to high (approximately 80%) on the plywood surface. Thus, it is likely that the insects did not pick up the lethal dose especially on porous surfaces. In contrast, fipronil demonstrated delayed toxicity that might promote maximal uptake by the insects. More than 80% mortality was registered for tile and plywood surfaces up to 4 wk after exposure. High mortality (almost 100%) was recorded for imidacloprid-exposed P. fuscipes at 48 h posttreatment, but only on the tile surface. Among the four insecticides tested, fenitrothion was the least effective against P. fuscipes because low percentage to no mortality was recorded in the fenitrothion treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links