Displaying all 2 publications

Abstract:
Sort:
  1. Gholami A, Mousavi SM, Masoumzadeh R, Binazadeh M, Bagheri Lankarani K, Omidifar N, et al.
    Micromachines (Basel), 2023 Jun 01;14(6).
    PMID: 37374770 DOI: 10.3390/mi14061185
    There are several treatment protocols for acute viral hepatitis, and it is critical to recognize acute hepatitis in its earliest stages. Public health measures to control these infections also rely on rapid and accurate diagnosis. The diagnosis of viral hepatitis remains expensive, and there is no adequate public health infrastructure, while the virus is not well-controlled. New methods for screening and detecting viral hepatitis through nanotechnology are being developed. Nanotechnology significantly reduces the cost of screening. In this review, the potential of three-dimensional-nanostructured carbon substances as promising materials due to fewer side effects, and the contribution of these particles to effective tissue transfer in the treatment and diagnosis of hepatitis due to the importance of rapid diagnosis for successful treatment, were extensively investigated. In recent years, three-dimensional carbon nanomaterials such as graphene oxide and nanotubes with special chemical, electrical, and optical properties have been used for the diagnosis and treatment of hepatitis due to their high potential. We expect that the future position of nanoparticles in the rapid diagnosis and treatment of viral hepatitis can be better determined.
  2. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al.
    Materials (Basel), 2023 Jun 29;16(13).
    PMID: 37444999 DOI: 10.3390/ma16134685
    Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links