Displaying all 4 publications

Abstract:
Sort:
  1. Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S
    J Biophotonics, 2021 01;14(1):e202000267.
    PMID: 32857463 DOI: 10.1002/jbio.202000267
    A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.
  2. Halim FC, Pesce P, De Angelis N, Benedicenti S, Menini M
    J Clin Med, 2022 Aug 28;11(17).
    PMID: 36078982 DOI: 10.3390/jcm11175052
    Background: Dental implants are widely used and in order to answer to esthetic demands, zirconia has been introduced as an abutment material as an alternative to titanium. Several studies have been published on this topic, but the results have been often inconsistent. The objective of the present study is to systematically analyze the existing literature comparing clinical outcomes of titanium and zirconia implant abutments. The study was designed as a systematic review of systematic reviews. Methods: This systematic review is in accordance with the Transparent Reporting of Systematic Reviews and Meta-analyses. A MEDLINE/PubMed, Cochrane Database of Systematic Reviews and SCOPUS literature search was performed up to and including June 2021. Data were extracted independently by two reviewers and tAMSTAR2 was used to assess the quality of the systematic reviews. Results: The electronic search identified 1146 papers, and 175 duplicates were removed. After manual screening, 954 studies were excluded and the final analysis was conducted on 11 papers. Both mechanical and esthetic outcomes and biological complications were analyzed. Conclusions: It can be concluded that titanium abutments have a better mechanical resistance than zirconia ones. Plaque accumulation is reported to be slightly higher on titanium but without any significant inflammatory process. The esthetic outcomes seem to be more related to the thickness (>3 mm) of the soft tissues than to the abutment material.
  3. Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Oct;199:111627.
    PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627
    Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
  4. Ravera S, Ferrando S, Agas D, De Angelis N, Raffetto M, Sabbieti MG, et al.
    J Biophotonics, 2019 09;12(9):e201900101.
    PMID: 31033186 DOI: 10.1002/jbio.201900101
    Photobiomodulation (PBM) is a non-plant-cell manipulation through a transfer of energy by means of light sources at the non-ablative or thermal intensity. Authors showed that cytochrome-c-oxidase (complex IV) is the specific chromophore's target of PBM at the red (600-700 nm) and NIR (760-900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in the β-oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2 . Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe-S proteins and Cu-centers of respiratory complexes and with the water molecules could be supposed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links