Displaying all 5 publications

Abstract:
Sort:
  1. Shinde R, Halim N, Banerjee AK
    J AOAC Int, 2020 Nov 01;103(6):1528-1533.
    PMID: 33247748 DOI: 10.1093/jaoacint/qsaa066
    BACKGROUND: Glyphosate and glufosinate are broad-spectrum herbicides which are frequently used in palm oil plantations for weed control. Metabolites of these herbicides are known to have environmental and food safety implications. As there is no validated method for multiresidue testing of these herbicides and their metabolites in palm oil products, a new method was needed for the purpose of regulatory analysis.

    OBJECTIVE: In this study, we endeavored to develop a rapid method for multiresidue analysis of glyphosate (+aminomethylphosphonic acid) and glufosinate (+3-methylphosphinicopropionic acid and N-acetyl-glufosinate) in refined and crude palm oil matrices using liquid chromatography (LC) tandem mass spectrometry (MS/MS).

    METHOD: The optimized sample preparation workflow included extraction of refined or crude palm oil (10 g) with acidified water (0.1 M HCl), cleanup by phase separation with dichloromethane, and analysis by LC-MS/MS with multiple reaction monitoring.

    RESULTS: The use of a Torus-DEA LC column ensured simultaneous analysis of these compounds within a runtime of 10 min. The LOQ of these analytes was 0.01 mg/kg, except that of aminomethylphosphonic acid which was 0.02 mg/kg. The method sensitivity complied with the national maximum residue limits of Malaysia and the European Union. Also, the method selectivity, sensitivity, accuracy, and precision were aligned with the SANTE/12682/2019 guidelines of analytical quality control.

    CONCLUSIONS: The potentiality of the optimized method lies in a high throughput direct analysis of glyphosate and glufosinate with their metabolites in a single chromatographic run. The method is fit for purpose for regulatory testing of these residues in a broad range of palm oil matrices.

    HIGHLIGHTS: The study reports for the first time a validated method for simultaneous analysis of glyphosate, glufosinate, and their metabolites in a range of palm oil products. The method did not require a derivatization step and provided a high throughput analysis of these compounds with satisfactory selectivity, sensitivity, accuracy, and precision.

  2. Guo W, Banerjee AK, Wu H, Ng WL, Feng H, Qiao S, et al.
    Front Plant Sci, 2021;12:637009.
    PMID: 34249031 DOI: 10.3389/fpls.2021.637009
    Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley's line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links