Displaying all 3 publications

Abstract:
Sort:
  1. Sapuan SM, Aulia HS, Ilyas RA, Atiqah A, Dele-Afolabi TT, Nurazzi MN, et al.
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992450 DOI: 10.3390/polym12102211
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.
  2. Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, et al.
    Int J Biol Macromol, 2024 Sep 03.
    PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207
    The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
  3. Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641185 DOI: 10.3390/polym13193365
    A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links