Displaying all 18 publications

Abstract:
Sort:
  1. Nur-Zhafarina A., Asyraf M.
    Sains Malaysiana, 2017;46:1241-1248.
    The main focus of this study was to examine the morphology of Mimosa pigra, an invasive weed in response to artificial biotic and abiotic stressors. Seedlings of M. pigra were subjected to stressors such as seed sowing density, leaf defoliation and water regime. Comparatively, morphological performance related to different sowing practices differed significantly (p<0.05), as seedlings that grew from high density populations had lean and outstanding apical growth. A comparison between the four different levels of defoliation on the morphological changes revealed that the increase in leaf defoliation significantly decreased the plant morphological traits (i.e. height, stem diameter and flower bud productivity) and biomass allocation. Relatively low growth performance was found in plants subjected to 100% defoliation, with markedly lower flower bud productivity in comparison with 0%, 25% and 50% (no flower buds compared to 27, 13 and 6 flower buds, respectively). For water stress treatment, M. pigra showed no significant difference (p>0.05) in morphological performance under different levels of water regime. However, seedlings that received low water (LW) treatment showed better growth performance than seedlings that received high water (HW) treatment, which had the lowest morphological traits and biomass allocation.
  2. Zuharah WF, Fadzly N, Ali Y, Zakaria R, Juperi S, Asyraf M, et al.
    Trop Biomed, 2014 Jun;31(2):297-304.
    PMID: 25134898 MyJurnal
    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants.
  3. Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR
    Polymers (Basel), 2021 Aug 06;13(16).
    PMID: 34451161 DOI: 10.3390/polym13162623
    In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.
  4. Chopra L, Thakur KK, Chohan JS, Sharma S, Ilyas RA, Asyraf MRM, et al.
    Materials (Basel), 2022 Mar 24;15(7).
    PMID: 35407737 DOI: 10.3390/ma15072404
    The hydrogels responding to pH synthesized by graft copolymerization only and then concurrent grafting and crosslinking of monomer N-isopropyl acrylamide (NIPAAM) and binary comonomers acrylamide, acrylic acid and acrylonitrile (AAm, AA and AN) onto chitosan support were explored for the percent upload and release study for anti-inflammatory diclofenac sodium drug (DS), w.r.t. time and pH. Diclofenac sodium DS was seized in polymeric matrices by the equilibration process. The crosslinked-graft copolymers showed the highest percent uptake than graft copolymers (without crosslinker) and chitosan itself. The sustainable release of the loaded drug was studied with respect to time at pH 2.2, 7.0, 7.4 and 9.4. Among graft copolymers (without crosslinking), Chit-g-polymer (NIPAAM-co-AA) and Chit-g-polymer (NIPAAM-co-AN) exhibited worthy results for sustainable drug deliverance, whereas Crosslink-Chit-g-polymer (NIPAAM-co-AA) and Crosslink-Chit-g-polymer (NIPAAM-co-AAm) presented the best results for controlled/sustained release of diclofenac sodium DS with 93.86 % and 96.30 % percent release, respectively, in 6 h contact time. Therefore, the grafted and the crosslinked graft copolymers of the chitosan showed excellent delivery devices for the DS with sustainable/prolonged release in response to pH. Drug release kinetics was studied using Fick’s law. The kinetic study revealed that polymeric matrices showed the value of n as n > 1.0, hence drug release took place by non-Fickian diffusion. Hence, the present novel findings showed the multidirectional drug release rate. The morphological changes due to interwoven network structure of the crosslinked are evident by the Scanning electron microscopy (SEM) analysis.
  5. Taharuddin NH, Jumaidin R, Mansor MR, Hazrati KZ, Tarique J, Asyraf MRM, et al.
    Polymers (Basel), 2023 Jun 12;15(12).
    PMID: 37376300 DOI: 10.3390/polym15122654
    Dragon fruit, also called pitaya or pitahaya, is in the family Cactaceae. It is found in two genera: 'Selenicereus' and 'Hylocereus'. The substantial growth in demand intensifies dragon fruit processing operations, and waste materials such as peels and seeds are generated in more significant quantities. The transformation of waste materials into value-added components needs greater focus since managing food waste is an important environmental concern. Two well-known varieties of dragon fruit are pitaya (Stenocereus) and pitahaya (Hylocereus), which are different in their sour and sweet tastes. The flesh of the dragon fruit constitutes about two-thirds (~65%) of the fruit, and the peel is approximately one-third (~22%). Dragon fruit peel is believed to be rich in pectin and dietary fibre. In this regard, extracting pectin from dragon fruit peel can be an innovative technology that minimises waste disposal and adds value to the peel. Dragon fruit are currently used in several applications, such as bioplastics, natural dyes and cosmetics. Further research is recommended for diverging its development in various areas and maturing the innovation of its usage.
  6. Alsubari S, Zuhri MYM, Sapuan SM, Ishak MR, Ilyas RA, Asyraf MRM
    Polymers (Basel), 2021 Jan 28;13(3).
    PMID: 33525703 DOI: 10.3390/polym13030423
    The interest in using natural fiber reinforced composites is now at its highest. Numerous studies have been conducted due to their positive benefits related to environmental issues. Even though they have limitations for some load requirements, this drawback has been countered through fiber treatment and hybridization. Sandwich structure, on the other hand, is a combination of two or more individual components with different properties, which when joined together can result in better performance. Sandwich structures have been used in a wide range of industrial material applications. They are known to be lightweight and good at absorbing energy, providing superior strength and stiffness-to-weight ratios, and offering opportunities, through design integration, to remove some components from the core element. Today, many industries use composite sandwich structures in a range of components. Through good design of the core structure, one can maximize the strength properties, with a low density. However, the application of natural fiber composites in sandwich structures is still minimal. Therefore, this paper reviewed the possibility of using a natural fiber composite in sandwich structure applications. It addressed the mechanical properties and energy-absorbing characteristics of natural fiber-based sandwich structures tested under various compression loads. The results and potential areas of improvement to fit into a wide range of engineering applications were discussed.
  7. Asyraf M, Dunne MP, Hairi NN, Mohd Hairi F, Radzali N, Wan Yuen C
    PLoS One, 2021;16(7):e0254717.
    PMID: 34292992 DOI: 10.1371/journal.pone.0254717
    OBJECTIVES: Childhood adversity has been linked with later victimization of young and middle-aged adults, but few studies have shown persistence of this effect among elders, especially outside of North America. This research examined the association between adverse childhood experiences (ACEs) and elder abuse among older adults aged 60 years and over in Malaysia.

    DESIGN: Cross sectional data were collected via face-to-face interview from June to August 2019.

    SETTING: Eight government community health clinics in Kuala Pilah, a district in Negeri Sembilan state approximately 100km from Malaysian capital city Kuala Lumpur.

    PARTICIPANTS: Older adults aged 60 years and above (N = 1984; Mean age 69.2, range 60-93 years) attending all eight government health clinics in the district were recruited for a face-to-face interview about health and well-being.

    MEASUREMENT: The Adverse Childhood Experience International Questionnaire (ACE-IQ) and the Revised Conflict Tactics Scale (CTS) were utilized to estimate childhood adversity and elder abuse respectively.

    RESULTS: Multiple logistic regression analysis revealed a significant relationship between the number of cumulative ACEs and elder abuse. Compared to older adults with no self-reported adversity, those reporting three ACEs (OR 2.67, 95% CI 1.84,3.87) or four or more ACEs (OR 1.7, 95% CI 1.16, 2.48) had higher risk of any elder abuse occurrence since age 60 years. The effect was most prominent for financial and psychological elder abuse. The associations persisted in multivariate logistic regression models after adjusting for sociodemographic and health factors.

    CONCLUSION: Early life adversities were significantly associated with victimization of older adults. Social and emotional support to address elder abuse should recognize that, for some men and women, there is a possibility that vulnerability to maltreatment persisted throughout their life course.

  8. Asyraf MRM, Ishak MR, Norrrahim MNF, Nurazzi NM, Shazleen SS, Ilyas RA, et al.
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1587-1599.
    PMID: 34740691 DOI: 10.1016/j.ijbiomac.2021.10.221
    Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
  9. Azman MA, Asyraf MRM, Khalina A, Petrů M, Ruzaidi CM, Sapuan SM, et al.
    Polymers (Basel), 2021 Jun 09;13(12).
    PMID: 34207597 DOI: 10.3390/polym13121917
    Natural fibers have attracted great attention from industrial players and researchers for the exploitation of polymer composites because of their "greener" nature and contribution to sustainable practice. Various industries have shifted toward sustainable technology in order to improve the balance between the environment and social and economic concerns. This manuscript aims to provide a brief review of the development of the foremost natural fiber-reinforced polymer composite (NFRPC) product designs and their applications. The first part of the manuscript presents a summary of the background of various natural fibers and their composites in the context of engineering applications. The behaviors of NFPCs vary with fiber type, source, and structure. Several drawbacks of NFPCs, e.g., higher water absorption rate, inferior fire resistance, and lower mechanical properties, have limited their applications. This has necessitated the development of good practice in systematic engineering design in order to attain optimized NRPC products. Product design and manufacturing engineering need to move in a mutually considerate manner in order to produce successful natural fiber-based composite material products. The design process involves concept design, material selection, and finally, the manufacturing of the design. Numerous products have been commercialized using natural fibers, e.g., sports equipment, musical instruments, and electronic products. In the end, this review provides a guideline for the product design process based on natural fibers, which subsequently leads to a sustainable design.
  10. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, et al.
    Nanomaterials (Basel), 2021 Aug 26;11(9).
    PMID: 34578502 DOI: 10.3390/nano11092186
    Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.
  11. Nurazzi NM, Asyraf MRM, Khalina A, Abdullah N, Aisyah HA, Rafiqah SA, et al.
    Polymers (Basel), 2021 Feb 22;13(4).
    PMID: 33671599 DOI: 10.3390/polym13040646
    Even though natural fiber reinforced polymer composites (NFRPCs) have been widely used in automotive and building industries, there is still a room to promote them to high-level structural applications such as primary structural component specifically for bullet proof and ballistic applications. The promising performance of Kevlar fabrics and aramid had widely implemented in numerous ballistic and bullet proof applications including for bullet proof helmets, vest, and other armor parts provides an acceptable range of protection to soldiers. However, disposal of used Kevlar products would affect the disruption of the ecosystem and pollutes the environment. Replacing the current Kevlar fabric and aramid in the protective equipment with natural fibers with enhanced kinetic energy absorption and dissipation has been significant effort to upgrade the ballistic performance of the composite structure with green and renewable resources. The vast availability, low cost and ease of manufacturing of natural fibers have grasped the attention of researchers around the globe in order to study them in heavy armory equipment and high durable products. The possibility in enhancement of natural fiber's mechanical properties has led the extension of research studies toward the application of NFRPCs for structural and ballistic applications. Hence, this article established a state-of-the-art review on the influence of utilizing various natural fibers as an alternative material to Kevlar fabric for armor structure system. The article also focuses on the effect of layering and sequencing of natural fiber fabric in the composites to advance the current armor structure system.
  12. Nurazzi NM, Asyraf MRM, Rayung M, Norrrahim MNF, Shazleen SS, Rani MSA, et al.
    Polymers (Basel), 2021 Aug 13;13(16).
    PMID: 34451248 DOI: 10.3390/polym13162710
    Natural fiber such as bamboo fiber, oil palm empty fruit bunch (OPEFB) fiber, kenaf fiber, and sugar palm fiber-reinforced polymer composites are being increasingly developed for lightweight structures with high specific strength in the automotive, marine, aerospace, and construction industries with significant economic benefits, sustainability, and environmental benefits. The plant-based natural fibers are hydrophilic, which is incompatible with hydrophobic polymer matrices. This leads to a reduction of their interfacial bonding and to the poor thermal stability performance of the resulting fiber-reinforced polymer composite. Based on the literature, the effect of chemical treatment of natural fiber-reinforced polymer composites had significantly influenced the thermogravimetric analysis (TGA) together with the thermal stability performance of the composite structure. In this review, the effect of chemical treatments used on cellulose natural fiber-reinforced thermoplastic and thermosetting polymer composites has been reviewed. From the present review, the TGA data are useful as guidance in determining the purity and composition of the composites' structures, drying, and the ignition temperatures of materials. Knowing the stability temperatures of compounds based on their weight, changes in the temperature dependence is another factor to consider regarding the effectiveness of chemical treatments for the purpose of synergizing the chemical bonding between the natural fiber with polymer matrix or with the synthetic fibers.
  13. Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641185 DOI: 10.3390/polym13193365
    A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
  14. Mohd Nurazzi N, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, et al.
    Polymers (Basel), 2021 Mar 26;13(7).
    PMID: 33810584 DOI: 10.3390/polym13071047
    A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.
  15. Ilyas RA, Sapuan SM, Asyraf MRM, Dayana DAZN, Amelia JJN, Rani MSA, et al.
    Polymers (Basel), 2021 May 23;13(11).
    PMID: 34070960 DOI: 10.3390/polym13111701
    Polymer composites filled with metal derivatives have been widely used in recent years, particularly as flame retardants, due to their superior characteristics, including high thermal behavior, low environmental degradation, and good fire resistance. The hybridization of metal and polymer composites produces various favorable properties, making them ideal materials for various advanced applications. The fire resistance performance of polymer composites can be enhanced by increasing the combustion capability of composite materials through the inclusion of metallic fireproof materials to protect the composites. The final properties of the metal-filled thermoplastic composites depend on several factors, including pore shape and distribution and morphology of metal particles. For example, fire safety equipment uses polyester thermoplastic and antimony sources with halogenated additives. The use of metals as additives in composites has captured the attention of researchers worldwide due to safety concern in consideration of people's life and public properties. This review establishes the state-of-art flame resistance properties of metals/polymer composites for numerous industrial applications.
  16. Nurazzi NM, Asyraf MRM, Athiyah SF, Shazleen SS, Rafiqah SA, Harussani MM, et al.
    Polymers (Basel), 2021 Jun 30;13(13).
    PMID: 34209030 DOI: 10.3390/polym13132170
    In the field of hybrid natural fiber polymer composites, there has been a recent surge in research and innovation for structural applications. To expand the strengths and applications of this category of materials, significant effort was put into improving their mechanical properties. Hybridization is a designed technique for fiber-reinforced composite materials that involves combining two or more fibers of different groups within a single matrix to manipulate the desired properties. They may be made from a mix of natural and synthetic fibers, synthetic and synthetic fibers, or natural fiber and carbonaceous materials. Owing to their diverse properties, hybrid natural fiber composite materials are manufactured from a variety of materials, including rubber, elastomer, metal, ceramics, glasses, and plants, which come in composite, sandwich laminate, lattice, and segmented shapes. Hybrid composites have a wide range of uses, including in aerospace interiors, naval, civil building, industrial, and sporting goods. This study intends to provide a summary of the factors that contribute to natural fiber-reinforced polymer composites' mechanical and structural failure as well as overview the details and developments that have been achieved with the composites.
  17. Ilyas RA, Zuhri MYM, Norrrahim MNF, Misenan MSM, Jenol MA, Samsudin SA, et al.
    Polymers (Basel), 2022 Jan 03;14(1).
    PMID: 35012203 DOI: 10.3390/polym14010182
    Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.
  18. Wan KS, Tok PSK, Yoga Ratnam KK, Aziz N, Isahak M, Ahmad Zaki R, et al.
    PLoS One, 2021;16(4):e0249394.
    PMID: 33852588 DOI: 10.1371/journal.pone.0249394
    INTRODUCTION: The reporting of Coronavirus Disease 19 (COVID-19) mortality among healthcare workers highlights their vulnerability in managing the COVID-19 pandemic. Some low- and middle-income countries have highlighted the challenges with COVID-19 testing, such as inadequate capacity, untrained laboratory personnel, and inadequate funding. This article describes the components and implementation of a healthcare worker surveillance programme in a designated COVID-19 teaching hospital in Malaysia. In addition, the distribution and characteristics of healthcare workers placed under surveillance are described.

    MATERIAL AND METHODS: A COVID-19 healthcare worker surveillance programme was implemented in University Malaya Medical Centre. The programme involved four teams: contact tracing, risk assessment, surveillance and outbreak investigation. Daily symptom surveillance was conducted over fourteen days for healthcare workers who were assessed to have low-, moderate- and high-risk of contracting COVID-19. A cross-sectional analysis was conducted for data collected over 24 weeks, from the 6th of March 2020 to the 20th of August 2020.

    RESULTS: A total of 1,174 healthcare workers were placed under surveillance. The majority were females (71.6%), aged between 25 and 34 years old (64.7%), were nursing staff (46.9%) and had no comorbidities (88.8%). A total of 70.9% were categorised as low-risk, 25.7% were moderate-risk, and 3.4% were at high risk of contracting COVID-19. One-third (35.2%) were symptomatic, with the sore throat (23.6%), cough (19.8%) and fever (5.0%) being the most commonly reported symptoms. A total of 17 healthcare workers tested positive for COVID-19, with a prevalence of 0.3% among all the healthcare workers. Risk category and presence of symptoms were associated with a positive COVID-19 test (p<0.001). Fever (p<0.001), cough (p = 0.003), shortness of breath (p = 0.015) and sore throat (p = 0.002) were associated with case positivity.

    CONCLUSION: COVID-19 symptom surveillance and risk-based assessment have merits to be included in a healthcare worker surveillance programme to safeguard the health of the workforce.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links