Displaying all 3 publications

Abstract:
Sort:
  1. Daud, S.N.H., Chiu, W.S., Aspanut, Z., Khiew, P.S.
    MyJurnal
    Current study report the growth of Zinc Oxide (ZnO) nanorods (NRs) by a facile and low temperature method on Zinc (Zn) foil in deionized (DI) water. These ZnO NRs have a typical length of 500-700 nm and average diameter of 50-70 nm. By using different volume of DI water, the morphology of ZnO nanostructures are tunable from rod-like to flower-like structures. Under the presence of Zn nitrate precursor, mixture of rod/wall-like structures are formed. Both of ZnO NRs and combined nanorods/nanowalls render higher diffraction for the (002) peak reveals, which implies preferred orientation growth along c-axis take place. However, photoluminescence (PL) study indicates that ZnO NRs have strong emission located at ~380 nm if compared to that of combined ZnO nanorods/nanowalls. This shows that ZnO NRs have higher-densities of defects.
  2. Kadir MF, Aspanut Z, Majid SR, Arof AK
    PMID: 21237698 DOI: 10.1016/j.saa.2010.12.051
    Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH(4)NO(3)) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm(-1) and the amine band at 1591 cm(-1) to 1650 and 1557 cm(-1) respectively and the shift of the hydroxyl band from 3377 to 3354 cm(-1). The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm(-1) and is observed at 3343 cm(-1) in the spectrum of the PVA film. On addition of NH(4)NO(3) up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm(-1) to 1642, 1541 and 3348 cm(-1) indicating that the chitosan has complexed with the salt. In the PVA-NH(4)NO(3) spectrum, the hydroxyl band has shifted from 3343 to 3272 cm(-1) on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH(4)NO(3) systems. In the spectrum of PVA-chitosan-NH(4)NO(3)-EC complex, the doublet CO stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.
  3. Chong SK, Azizan SN, Chan KW, Nguyen HQ, Chiu WS, Aspanut Z, et al.
    Nanoscale Res Lett, 2013;8(1):428.
    PMID: 24134646 DOI: 10.1186/1556-276X-8-428
    A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links