Displaying all 15 publications

Abstract:
Sort:
  1. Arshad L, Jantan I, Bukhari SNA
    Drug Des Devel Ther, 2019;13:1421-1436.
    PMID: 31118577 DOI: 10.2147/DDDT.S185191
    Background: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has been revealed to possess strong in vitro and in vivo immunosuppressive effects. Purpose: The aim of present study was to prepare and characterize BBP-encapsulated polylactic-co-glycolic acid-block-polyethylene glycol (PLGA-b-PEG) nanoparticles and to evaluate its in vivo efficacy against innate and adaptive immune responses. Methods: Male BALB/c mice were orally administered with BBP alone and BBP- encapsulated nanoparticles equivalent to 5, 10 and 20 mg/kg of BBP in distilled water for a period of 14 days. The immunomodulatory potential was appraised by determining its effects on non-specific and specific immune parameters. Results: The results showed that BBP was successfully encapsulated in PLGA-b-PEG polymer with 154.3 nm size and high encapsulation efficiency (79%) while providing a sustained release for 48 hours. BBP nanoparticles showed significant enhanced dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity, reactive oxygen species (ROS) production, serum levels of ceruloplasmin and lysozyme, immunoglobulins and myloperoxidase (MPO) plasma levels when compared to unencapsulated BBP. Enhanced dose-dependent inhibition was also observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines, and reduction in rat paw oedema in BBP nanoparticles treated mice. At higher doses the suppressive effects of the BBP nanoparticles on various cellular and humoral parameters of immune responses were comparable to that of cyclosporine-A at 20 mg/kg. Conclusion: These findings suggest that the immunosuppressive effects of BBP were enhanced as PLGA-b-PEG nanoparticles.
  2. Ghazalee NS, Jantan I, Arshad L, Haque MA
    Phytother Res, 2019 Apr;33(4):929-938.
    PMID: 30618097 DOI: 10.1002/ptr.6285
    Zingiber zerumbet rhizome has been used in traditional medicine mainly for the treatment of various immune-inflammatory related ailments and has been shown to exhibit a wide spectrum of biological effects especially antioxidant and anti-inflammatory activities. The present study was aimed to investigate the immunosuppressive effects of the standardized 80% ethanol extract of Z. zerumbet at 100, 200, and 400 mg/kg on the innate immune responses in male Wistar rats. The immune parameters determined were chemotaxis of neutrophils, Mac-1 expression, engulfment of Escherichia coli by neutrophils, reactive oxygen species production, and plasma lysozyme and ceruloplasmin levels. Zerumbone was qualitatively and quantitatively determined in the extract by using a validated reversed-phase HPLC, whereas liquid chromatography tandem-mass spectrometry (LC -MS/MS) was used to profile the secondary metabolites. Z. zerumbet significantly inhibited the migration of neutrophils, expressions of CD11b/CD18 integrin, phagocytic activity, and production of reactive oxygen species in a dose-dependent manner. The extract also dose-dependently inhibited the expressions of lysozyme and ceruloplasmin in the rat plasma. Z. zerumbet extract possessed strong inhibitory effects on the innate immune responses and has potential to be developed into an effective immunosuppressive agent.
  3. Jantan I, Haque MA, Ilangkovan M, Arshad L
    Int Immunopharmacol, 2019 Aug;73:552-559.
    PMID: 31177081 DOI: 10.1016/j.intimp.2019.05.035
    Zerumbone exhibited various biological properties including in vitro immunosuppressive effects. However, its modulatory activity on the immune responses in experimental animal model is largely unknown. This investigation was conducted to explore the effects of daily treatment of zerumbone (25, 50, and 100 mg/kg) isolated from Zingiber zerumbet rhizomes for 14 days on various cellular and humoral immune responses in Balb/C mice. For measurement of adaptive immunity, sheep red blood cells (sRBC) were used to immunize the mice on day 0 and orally fed with similar doses of zerumbone for 14 days. The effects of zerumbone on phagocytosis, nitric oxide (NO) release, myeloperoxidase (MPO) activity, proliferation of T and B cells, lymphocyte phenotyping, cytokines release in serum by activated T cells, delayed type hypersensitivity (DTH) and immunoglobulins production (IgG and IgM) were investigated. Zerumbone downregulated the engulfment of E. coli by peritoneal macrophages and the release of NO and MPO in a concentration-dependent manner. Zerumbone showed significant and concentration-dependent suppression of T and B lymphocytes proliferation and inhibition of the Th1 and Th2 cytokines release. At higher concentrations of zerumbone, the % expression of CD4+ and CD8+ in splenocytes was significantly inhibited. Zerumbone also concentration-dependently demonstrated strong suppression on sRBC-triggered swelling of mice paw in DTH. Substantial suppression of anti-sRBC immunoglobulins antibody titer was noted in immunized and zerumbone-treated mice in a concentration-dependent manner. The potent suppressive effects of zerumbone on the immune responses suggest that zerumbone can be a potential candidate for development of immunosuppressive agent.
  4. Arshad L, Haque MA, Abbas Bukhari SN, Jantan I
    Future Med Chem, 2017 04;9(6):605-626.
    PMID: 28394628 DOI: 10.4155/fmc-2016-0223
    Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
  5. Arshad L, Jantan I, Bukhari SNA, Fauzi MB
    Curr Pharm Biotechnol, 2018;19(6):468-482.
    PMID: 29968535 DOI: 10.2174/1389201019666180703092723
    BACKGROUND: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has previously been shown to manifest potent immunosuppressive effects on the in vitro phagocytosis process of human neutrophils.

    OBJECTIVE: In the present study, BBP was investigated for it's in vivo innate and adaptive immune responses mediated by different humoral and cellular immune factors.

    METHODS: Male Balb/c mice were orally fed with BBP (5, 10 and 20 mg/kg) for a period of 14 days and immunized with sheep red blood cells (sRBC) on day 0 for the determination of adaptive responses. The effects of BBP on phagocytosis process of neutrophils isolated from blood of treated/untreated animals were determined. The ceruloplasmin and lysozyme serum levels and myeloperoxidase (MPO) plasma level were also monitored. The mechanism was further explored by assessing its effects on the proliferation of T and B lymphocytes, T-lymphocytes subsets CD4+ and CD8+ and on the secretion of Th1/Th2 cytokines as well as serum immunoglobulins (IgG, IgM) and delayed type hypersensitivity (DTH) reaction.

    RESULTS: BBP showed a significant dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity and reactive oxygen species (ROS) production. In comparison to the sensitized control group, a dose-dependent inhibition was observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines. Moreover, a statistically significant decrease was perceived in serum levels of ceruloplasmin, lysozyme and immunoglobulins and MPO plasma level of BBP-treated mice. BBP also dose-dependently inhibited sheep red blood cells (sRBC)-induced swelling rate of mice paw in DTH.

    CONCLUSION: These findings suggest the potential of BBP as a potent immunosuppressive agent.

  6. Abdul Wahab SM, Jantan I, Haque MA, Arshad L
    Front Pharmacol, 2018;9:661.
    PMID: 29973884 DOI: 10.3389/fphar.2018.00661
    The use of anti-inflammatory natural products to treat inflammatory disorders for cancer prevention and therapy is an appealing area of interest in the last decades. Annona muricata L. is one of the many plant extracts that have been explored owing to their anti-inflammatory and anticancer effects. Different parts of A. muricata especially the leaves have been used for various ethnomedicinal purposes by traditional healers to treat several diseases including cancer, inflammation, diabetes, liver diseases, and abscesses. Some of these experience-based claims on the use of the plant have been transformed into evidence-based information by scientific investigations. The leaves of the plant have been extensively investigated for its diverse pharmacological aspects and found eminent for anti-inflammatory and anticancer properties. However, most studies were not on the bioactive isolates which were responsible for the activities but were based on crude extracts of the plant. In this comprehensive review, all significant findings from previous investigations till date on the leaves of A. muricata, specifically on their anti-inflammatory and anticancer activities have been compiled. The toxicology of the plant which has been shown to be due to the presence of neurotoxic annaceous acetogenins and benzyltetrahydro-isoquinoline alkaloids has also been updated to provide recent information on its safety aspects. The present knowledge of the plant has been critically assessed, aimed at providing direction toward improving its prospect as a source of potential anti-inflammatory and anticancer agents. The analysis will provide a new path for ensuring research on this plant to discover new agents to treat inflammatory diseases and cancer. Further in vitro and in vivo studies should be carried out to explore the molecular mechanisms underlying their anti-inflammatory responses in relation to anticancer activity and more detail toxicity study to ensure they are safe for human consumption. Sufficient preclinical data and safety data generated will allow clinical trials to be pursued on this plant and its bioactive compounds.
  7. Haque MA, Jantan I, Arshad L, Bukhari SNA
    Food Funct, 2017 Oct 18;8(10):3410-3431.
    PMID: 28714500 DOI: 10.1039/c7fo00595d
    Plant-derived immunomodulators and anti-cancer agents have attracted a lot of interest from natural product scientists for their efficacy and safety and their significant contribution towards understanding targeted drug action and drug delivery mechanisms. Zerumbone, the main constituent of Zingiber zerumbet rhizomes, has been investigated for its wide-spectrum role in treating multitargeted diseases. The rhizomes have been used as food flavoring agents in various cuisines and in herbal medicine. Many in vivo and in vitro studies have provided evidence of zerumbone as a potent immunomodulator as well as a potential anti-cancer agent. This review is an interesting compilation of all those significant outcomes from investigations carried out to date to explore the immunomodulatory and anticancer properties of zerumbone. The ultimate objective of this comprehensive review is to provide updated information and a critical assessment on zerumbone including its chemistry and immunomodulating and anticancer properties, which may be of paramount importance to provide a new path for ensuing research to discover new agents to treat cancers and immune-related diseases. In addition, updated information on the toxicology of zerumbone has also been summarized to provide its safety profile.
  8. Arshad L, Jantan I, Bukhari SN, Haque MA
    Front Pharmacol, 2017;8:22.
    PMID: 28194110 DOI: 10.3389/fphar.2017.00022
    The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents.
  9. Akhtar NMY, Jantan I, Arshad L, Haque MA
    BMC Complement Altern Med, 2019 Nov 21;19(1):331.
    PMID: 31752812 DOI: 10.1186/s12906-019-2748-5
    BACKGROUND: Zingiber zerumbet rhizome and its bioactive metabolites have previously been reported to exhibit innumerable pharmacological properties particularly anti-inflammatory activities. In the present study, the 80% ethanol extract, essential oil and zerumbone of Z. zerumbet rhizomes were explored for their in vitro immunosuppressive properties on chemotaxis, CD11b/CD18 expression, phagocytosis and chemiluminescence of isolated human polymorphonuclear neutrophils (PMNs).

    METHODS: The extract was analyzed quantitatively by performing a validated reversed phase high performance liquid chromatography (RP-HPLC). Zerumbone was isolated by chromatographic technique while the essential oil was acquired through hydro-distillation of the rhizomes and further analyzed by gas chromatography (GC) and GC-MS. Chemotaxis assay was assessed by using a 24-well cell migration assay kit, while CD18 integrin expression and phagocytic engulfment were measured using flow cytometry. The reactive oxygen species (ROS) production was evaluated by applying lucigenin- and luminol-enhanced chemiluminescence assays.

    RESULTS: Zerumbone was found to be the most abundant compound in the extract (242.73 mg/g) and the oil (58.44%). Among the samples tested, the oil revealed the highest inhibition on cell migration with an IC50 value of 3.24 μg/mL. The extract, oil and zerumbone showed moderate inhibition of CD18 integrin expression in a dose-dependent trend. Z. zerumbet extract showed the highest inhibitory effect on phagocytic engulfment with percentage of phagocytizing cells of 55.43% for PMN. Zerumbone exhibited strong inhibitory activity on oxidative burst of zymosan- and PMA-stimulated neutrophils. Zerumbone remarkably inhibited extracellular ROS production in PMNs with an IC50 value of 17.36 μM which was comparable to that of aspirin.

    CONCLUSION: The strong inhibition on the phagocytosis of neutrophils by Z. zerumbet extract and its essential oil might be due the presence of its chemical components particularly zerumbone which was capable of impeding phagocytosis at different stages.

  10. Arshad L, Haque MA, Harikrishnan H, Ibrahim S, Jantan I
    Mol Biol Rep, 2024 Jul 11;51(1):789.
    PMID: 38990383 DOI: 10.1007/s11033-024-09722-z
    BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide.

    METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR.

    RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1β secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/β, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment.

    CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.

  11. Jantan I, Haque MA, Ilangkovan M, Arshad L
    Front Pharmacol, 2019;10:878.
    PMID: 31440162 DOI: 10.3389/fphar.2019.00878
    Phyllanthus species (family; Euphorbiaceae) have been intensively studied for their immunomodulating effects due to their wide-ranging uses to treat immune-related diseases in indigenous medicine, which are primarily lack of scientific basis. The focuses of this review are on the significance of Phyllanthus species and their bioactive metabolites particularly corilagin (1), geraniin (2), gallic acid (3), phyllanthin (4), hypophyllanthin (5), ellagic acid (6), phyltetralin (7), niranthin (8), catechin (9), quercetin (10), astragalin (11), and chebulagic acid (12) in the modulation of both innate and adaptive immune systems through various mechanisms and their possible therapeutic benefits for treatment of immune-related diseases. We have compiled all significant findings published in the literature, and the data were analyzed critically to provide perspectives and directions for future research for the plants as a prospective source of novel immunomodulating agents. Various Phyllanthus species particularly Phyllanthus amarus, Phyllanthus emblica, Phyllanthus niruri, and Phyllanthus urinaria have been documented to possess significant immunomodulatory effects. However, the possible challenges encountered by the application of extracts of various Phyllanthus species and their bioactive constituents as immunomodulators need to be addressed. Most reports on the biological and pharmacological studies of the plants were based on crude extracts. The extracts were not chemically characterized, and the contributions of their chemical constituents to the bioactivities were not identified. The underlying mechanisms involved in the immunomodulatory effects of the Phyllanthus species were not indepthly studied due to limitations in terms of design, conduct, and interpretation. Extensive experimental and preclinical studies on the immunomodulating potential of Phyllanthus species should be carried out to provide sufficient data to prove that their traditional uses are inherently effective and safe and will allow clinical trials to be pursued for their further development as therapeutic agents to treat immune-related disorders.
  12. Akter S, Jahan I, Khatun MR, Khan MF, Arshad L, Jakaria M, et al.
    Biosci Rep, 2021 01 29;41(1).
    PMID: 33324970 DOI: 10.1042/BSR20203022
    Merremia vitifolia (Burm.f.) Hallier f., an ethnomedicinally important plant, used in the tribal areas to treat various ailments including fever, headache, eye inflammation, rheumatism, dysentery, jaundice and urinary diseases. The present study explored the biological efficacy of the aqueous fraction of M. vitifolia leaves (AFMV) through in vitro and in vivo experimental models. The thrombolytic and anti-arthritic effects of AFMV were evaluated by using the clot lysis technique and inhibition of protein denaturation technique, respectively. The anti-nociceptive activity of AFMV was investigated in Swiss Albino mice by acetic acid-induced writhing test and formalin-induced paw licking test. The antioxidant activities of AFMV, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and total reducing power, were also tested. The qualitative phytochemical assays exhibited AFMV contains secondary metabolites such as alkaloid, carbohydrate, flavonoid, tannin, triterpenoids and phenols. In addition, AFMV showed strong antioxidant effects with the highest scavenging activity (IC50 146.61 µg/mL) and reducing power was increased with a dose-dependent manner. AFMV also revealed notable clot lysis effect and substantial anti-arthritic activity at higher doses (500 µg/mL) as compared with the control. The results demonstrated a promising reduction of the number of writhing and duration of paw licking in acetic acid-induced writhing test and formalin-induced paw licking test in a dose-dependent manner, respectively. In conclusion, AFMV provides the scientific basis of its folkloric usage, suggesting it as the vital source of dietary supplement.
  13. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
  14. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT
    Phytother Res, 2023 Mar;37(3):1036-1056.
    PMID: 36343627 DOI: 10.1002/ptr.7671
    The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
  15. Abdul Wahab SM, Husain K, Jantan I, Arshad L, Haque MA, Mohd Fauzi N, et al.
    Curr Pharm Biotechnol, 2023;24(11):1465-1477.
    PMID: 36545731 DOI: 10.2174/1389201024666221221113020
    BACKGROUND: Annona muricata L. (Annonaceae) (AM)'s remarkable anti-inflammatory and anti-cancer activities make it a targeted plant to be explored for its immunomodulatory properties. Traditional practitioners have employed various components of AM to cure a variety of ailments, including cancer, diabetes, and inflammation.

    OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.

    METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.

    RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).

    CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links