Displaying all 4 publications

Abstract:
Sort:
  1. Baharom M, Ahmad N, Hod R, Arsad FS, Tangang F
    PMID: 34769638 DOI: 10.3390/ijerph182111117
    BACKGROUND: Climate change poses a real challenge and has contributed to causing the emergence and re-emergence of many communicable diseases of public health importance. Here, we reviewed scientific studies on the relationship between meteorological factors and the occurrence of dengue, malaria, cholera, and leptospirosis, and synthesized the key findings on communicable disease projection in the event of global warming.

    METHOD: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow checklist. Four databases (Web of Science, Ovid MEDLINE, Scopus, EBSCOhost) were searched for articles published from 2005 to 2020. The eligible articles were evaluated using a modified scale of a checklist designed for assessing the quality of ecological studies.

    RESULTS: A total of 38 studies were included in the review. Precipitation and temperature were most frequently associated with the selected climate-sensitive communicable diseases. A climate change scenario simulation projected that dengue, malaria, and cholera incidence would increase based on regional climate responses.

    CONCLUSION: Precipitation and temperature are important meteorological factors that influence the incidence of climate-sensitive communicable diseases. Future studies need to consider more determinants affecting precipitation and temperature fluctuations for better simulation and prediction of the incidence of climate-sensitive communicable diseases.

  2. Arsad FS, Hod R, Ahmad N, Baharom M, Ja'afar MH
    Environ Sci Pollut Res Int, 2023 Jun;30(29):73137-73149.
    PMID: 37211568 DOI: 10.1007/s11356-023-27089-9
    Thermal comfort is linked to our health, well-being, and productivity. The thermal environment is one of the main factors that influence thermal comfort and, consequently, the productivity of occupants inside buildings. Meanwhile, behavioural adaptation is well known to be the most critical contributor to the adaptive thermal comfort model. This systematic review aims to provide evidence regarding indoor thermal comfort temperature and related behavioural adaptation. Studies published between 2010 and 2022 examining indoor thermal comfort temperature and behavioural adaptations were considered. In this review, the indoor thermal comfort temperature ranges from 15.0 to 33.8 °C. The thermal comfort temperature range varied depending on several factors, such as climatic features, ventilation mode, type of buildings, and age of the study population. Elderly and younger children have distinctive thermal acceptability. Clothing adjustment, fan usage, AC usage, and open window were the most common adaptive behaviour performed. Evidence shows that behavioural adaptations were also influenced by climatic features, ventilation mode, type of buildings, and age of the study population. Building designs should incorporate all factors that affect the thermal comfort of the occupants. Awareness of practical behavioural adaptations is crucial to ensure occupants' optimal thermal comfort.
  3. Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, et al.
    Int J Environ Res Public Health, 2022 Dec 06;19(23).
    PMID: 36498428 DOI: 10.3390/ijerph192316356
    BACKGROUND: This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component.

    METHODS: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework.

    RESULTS: A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors.

    CONCLUSIONS: While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.

  4. Baharom M, Ahmad N, Hod R, Ja'afar MH, Arsad FS, Tangang F, et al.
    Heliyon, 2024 Jan 15;10(1):e23473.
    PMID: 38173528 DOI: 10.1016/j.heliyon.2023.e23473
    BACKGROUND: Leptospirosis is a neglected emerging zoonotic disease with a profound public health impact worldwide with higher burden of disease in resource-poor countries. The environmental and occupational exposures contribute to human and animal transmission, but the interaction was less explored. A deeper understanding of the critical environmental and occupational drivers in different contexts will provide useful information for disease control and prevention measures.

    OBJECTIVE: This review aimed to summarize the potential environmental and occupational risk factors associated with leptospirosis infection.

    METHODS: Four databases (Scopus, Web of Science, Ovid MEDLINE, EBSCOhost) were searched for articles published from 2012 to 2021. Eligible articles were assessed using a checklist for assessing the quality of the studies. The quality of the articles was assessed based on the laboratory diagnosis approach and statistical analysis method.

    RESULTS: A total of 32 studies were included in this systematic review. Water-related risk factors such as natural water as the primary water source (AOR 1.8-18.28), water-related recreational activities (AOR 2.36-10.45), flood exposure (AOR 1.54-6.04), contact with mud (AOR 1.57-4.58) and stagnant water (AOR 2.79-6.42) were associated with increased risk of leptospirosis. Infrastructural deficiencies such as un-plastered house walls and thatched houses presented a higher risk (AOR 2.71-5.17). Living in low-lying areas (AOR 1.58-3.74), on clay loam soil (OR 2.72), agricultural land (OR 2.09), and near rubber tree plantations (AOR 11.65) is associated with higher risk of leptospirosis. Contact with rats (AOR 1.4-3.5), livestock (AOR 1.3-10.4), and pigs (AOR 1.54-7.9) is associated with an increased risk of leptospirosis. Outdoor workers (AOR 1.95-3.95) and slaughterhouse workers (AOR 5.1-7.5) have higher risk of leptospirosis.

    CONCLUSION: The environmental and occupational components related to water, infrastructure, landscape, agriculture, and exposed animals play an essential role in leptospirosis transmission. The magnitude of those risk factors differs with geographical region, climate factor, urbanization and population growth, and the country's socioeconomic status.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links