The composition of fish larvae and their diversity in different habitats are very important for fisheries management. Larval fishes were investigated in a mangrove estuary of Marudu Bay, Sabah, Malaysia from October 2012 to September 2013 at five different sites. Monthly samples of fish larvae were collected at five sampling sites by a plankton net with a mouth opening of 40.5 cm in diameter. In total, 3879 larval fish were caught in the investigated area. The mean density of ichthyoplankton at this area was 118 larvae/100 m(3). The fish larval assemblage comprised of 20 families whereas 13 families occurred at St1, 16 at St2, 16 at St3, 12 at St4 and 16 at St5. The top major families were Sillaginidae, Engraulidae, Mugilidae and Sparidae with Sillaginidae consisted 44% of total larval composition. St3 with 143 larvae/100 m(3) had the highest density amongst the stations which was due to higher abundance of Sillaginidae. Shannon-Wiener diversity index represented significant variation during monsoon and inter-monsoon seasons, peaking in the months December-January and May-June. However, Shannon-Wiener index, evenness and family richness showed significant differences among stations and months (p < 0.05).
The stomach contents of Omobranchus sp. (family Blenniidae) larvae were investigated in a seagrass-mangrove based ecosystem in Johor Strait, Malaysia from October 2007 to September 2008. Specimens of larval fish were collected through subsurface towing of a Bongo net from five different stations. The stomach sacs of 267 Omobranchus sp. larvae were separated and observed, which comprised of 24 significant food stuffs belonging to 6 main groups viz. phytoplankton (62.45%), zooplankton (18.24%), algae (5.56%), plant-like particles (5.75%), debris (4.22%) and unidentified particles (2.03%). In situ water parameters were also measured throughout the sampling cruises. There was a strong and significant positive correlation between stomach phytoplankton and salinity (r = 0.658, p < 0.05).? Canonical correlation analysis indicated a weak relationship (29.8%) between stomach contents and physico-chemical parameters. Only salinity appeared to be the controlling factor for the stomach contents of Omobranchus sp. larvae in the investigated area. Based on the stomach content analysis, it could be concluded that Omobranchus sp. were mainly herbivorous during the larval stages. ?
A study on diversity and distribution of fish communities and water qualities were carried out from January 2009 to December 2010 to cover monsoon and non-monsoon at Kuantan estuary, Pahang, Malaysia. A total of 19 species of primary marine fish belong to 12 families were recorded. Out of 311 individuals the fish fauna was dominated by Ariidae followed by Lutjanidae and Lactaridae. As such Ariidae contributes 50% of the fish caught in the study area and its diversity index (H') was 0.97. A The Ariidae family consist of four (4) species; Arius maculatus, Arius sumatranus, Arius tenuispinis and Arius thalassinus. The Ariidae family can be found in all stations as they are euryhaline (highly tolerant to salinity) and this fish family are known to be a hardy estuarine catfish. Among all species in family Ariidae, Arius thalassinus was the most dominant (23%) among all species. As such collected species showed highest species diversity (0.34) followed by Arius tenuispinis (0.25) compared to other species. Arius tenuispinis alone contributed 11.90% among the samples caught from all stations. The fishes were caught and recorded highest in September-December. Pseudorhombus quinque ocellatus, Nibea soldado, Sardinella fimbriata, Toxotes jaculatrix, Dasyatis ushiei, Setipinna taty were the least dominant in the Kuantan estuary with 9.33% of total abundance. Physico-temperatures, such as temperature (22.03-30 degrees C), Conductivity (10.342.43 mS cm(-1)), TDS (0.06-26.34 mg L(-1)), salinity (0.05-29.09 ppt), DO (6.37-8.38 mg L(-1)), pH (4.97-8.03), Chl a (0.01-1.33 microg L(-1)), nitrite (0.01-0.08 mg L(-1)), nitrate (0.60-0.88 mg L(-1)), phosphate (0.24-0.40 mg L(-1)). Nevertheless, the study envisages that the water quality and fish diversity are still conducive in the Kuantan estuary. The fish diversity of Pahang estuary was high monsoon compared to non-monsoons. The station 4 (LKIM fishing boat jetty and adjacent Hospital Kuantan) is the most polluted area due to the presence of several outskirts could be alarming for the sustainable development of fish and other aquatic organisms in Kuantan estuary in the long run.
Our previous study demonstrated that among different habitat sites (mangrove, estuary, river, seagrass and Open Sea) in Johor Strait, Malaysia, seagrass showed highest family diversity and abundance of larval fish. However, it is unclear whether this was due to difference in habitat complexity or water quality parameters.? To test this, larval fish were collected by using a bongo net equipped with a flow meter by subsurface horizontal towing from different habitats in Johor Strait between October 2007 and September 2008.? Various physico-chemical parameters were measured and then examined for any relationship to fish larvae diversity and abundance. Among the 24 families identified from the sites, seven families (Blenniidae, Clupeidae, Mullidae, Nemipteridae, Syngnathidae, Terapontidae and Uranoscopeidae) were significantly correlated with the tested waters quality parameters.? Salinity showed a positive and negative significant correlation with Clupeidae (p < 0.01) and Uranoscopeidae (p < 0.05), respectively. Terapontidae was significantly correlated with dissolved oxygen (p < 0.01), while both Mullidae and Syngnathidae were significantly correlated with pH (p < 0.05). However, a canonical correspondence analysis test indicated weak overall correlation (36.4%) between larval assemblage and in the seagrass-mangrove ecosystem of Johor Strait, Malaysia. This likely indicates that habitat structure was more important in determining larval abundance (highest in the seagrass habitat) as compared to water quality at the tested sites. This study emphasizes the need to conserve seagrass beds as important nursery grounds for various fish larvae to ensure adequate recruitment and ultimately sustainable fisheries management. ?