Displaying all 7 publications

Abstract:
Sort:
  1. Hong Z, Anuar MSS, Grismer LL, Quah ESH
    Zootaxa, 2024 Feb 15;5410(4):519-532.
    PMID: 38480228 DOI: 10.11646/zootaxa.5410.4.3
    Species in the genus Pseudocalotes are generally rare and known only from a few specimens. Pseudocalotes drogon was described based on a single male from Frasers Hill, Pahang, Peninsular Malaysia. During a recent field survey at Frasers Hill, a female specimen was collected and identified as P. drogon based on morphological characters and a molecular phylogenetic analysis. The morphological description of P. drogon is expanded here, based on the male holotype and the newly collected female specimen.
  2. Quah ESH, Wood PLJ, Anuar MSS, Muin MA
    Zootaxa, 2020 Apr 23;4767(1):zootaxa.4767.1.6.
    PMID: 33056576 DOI: 10.11646/zootaxa.4767.1.6
    A new, diminutive species of Rock Gecko Cnemaspis tubaensis sp. nov. of the C. kumpoli group, is described from Tuba Island, Langkawi Archipelago, Kedah, Peninsular Malaysia and is differentiated from all other species in the kumpoli group by having a unique combination of morphological and color pattern characteristics, including a maximum SVL of 37.0 mm; 10 or 11 supralabials; eight or nine infralabials; 15-18 semi-linearly arranged paravertebral tubercles; lateral caudal furrow present; lateral caudal tubercles on the anterior portion of the tail; caudal tubercles not encircling tail; five or six precloacal pores; 28 or 29 subdigital lamellae on the fourth toe; smooth ventrals; smooth subcaudals with an enlarged median row of scales; subcaudal region light-grey and speckled with yellow; absence of light-colored ocelli on the shoulder; no yellow postscapular band; dorsum light-brown with sage-green blotches and black spots; flanks with scattered yellow spots; absence of black gular markings in both sexes; and 13.0-22.0% uncorrected pairwise sequence divergences in the NADH dehydrogenase subunit 2 gene (ND2). Cnemaspis tubaensis sp. nov. is the fourth species of Cnemaspis to be described from the Langkawi Archipelago and underscores the underestimated biodiversity of the islands which is in need of more thorough herpetological inventories.
  3. Quah ESH, Grismer LL, Lim KKP, Anuar MSS, Imbun AY
    Zootaxa, 2019 Jul 25;4646(3):zootaxa.4646.3.4.
    PMID: 31717003 DOI: 10.11646/zootaxa.4646.3.4
    A review of the taxonomic status of the Smooth Slug Snake (Asthenodipsas laevis) in Borneo resulted in the discovery of two previously unrecognised species from the highlands of Sabah, East Malaysia. Asthenodipsas jamilinaisi sp. nov. and A. stuebingi sp. nov. are presumed to be closely related to A. laevis based on similarities in pholidosis and patterning but can be separated from A. laevis by their dorsal scale rows of 15/15/15 vs 15/15/13 and the presence of a sharp vertebral keel. Asthenodipsas jamilinaisi sp. nov. can be further differentiated from A. stuebingi sp. nov. by the greatly enlarged size of the vertebral scales, higher number of ventrals in males (173-175 vs 165), higher number of subcaudals (53 vs 35-47) and colour pattern (dark overall with indistinct bands vs lighter head and body with clear, distinct bands and a dark neck patch). The discovery highlights the need for more careful examination of much of the herpetofauna of Borneo that still remains underestimated and understudied. There is an urgent need for continued surveys into its diversity and the collection of genetic material for integrated taxonomic revisions.
  4. Quah ESH, Grismer LL, Lim KKP, Anuar MSS, Chan KO
    Zootaxa, 2020 Jan 28;4729(1):zootaxa.4729.1.1.
    PMID: 32229869 DOI: 10.11646/zootaxa.4729.1.1
    A reappraisal of the taxonomic status of the Dark-necked Slug Snake (Asthenodipsas malaccana Peters, 1864) across its range revealed that populations from Borneo are not conspecific with true A. malaccana from the Thai-Malay Peninsula and Sumatra, and is therefore described herein as new. Asthenodipsas borneensis sp. nov. can be distinguished from A. malaccana and other congeners by the absence of a preocular and suboculars, seven or eight supralabials with 3rd and 4th in contact with orbit, 4-7 infralabials with 2nd or 3rd pair in contact, two pairs of posterior inframaxillaries, 15/15/15 rows of dorsal scales, presence of sharp vertebral keel, divided subcaudals, maximum recorded SVL=441 mm, 166-179 ventrals, 35-48 subcaudals, head white to greyish brown and dorsum beige to orange-brown with a conspicuous dark-brown or black patch on the neck followed by multiple, narrow, vertical, dark bands along the rest of the body and tail. This discovery adds to a growing number of new slug snake species recently described from Southeast Asia and highlights the underestimated diversity in this family, especially in Borneo. Taxonomic revisions of the reptiles and amphibians of Borneo are still needed before the true diversity of the island and the relationships of the various taxa can be fully understood.
  5. Quah ESH, Grismer LL, Syafiq MF, Rujirawan A, Aowphol A, Ahmad AB, et al.
    Zootaxa, 2023 Jul 21;5318(4):489-503.
    PMID: 37518264 DOI: 10.11646/zootaxa.5318.4.3
    The taxonomic status of Cyrtodactylus zebraicus in Peninsular Malaysia has been plagued with uncertainty over the last three decades owing to a lack of vouchered material. Recent collections confirmed the presence of this species in the northernmost state of Perlis and for the country. An expanded description of the newly collected Peninsular Malaysian specimens as well as the holotype of C. zebraicus is provided along with a comparison with other Cyrtodactylus species in the country. This study adds to the growing number of herpetofaunal species with Indo-Burmese affinities discovered in northern states of the country and the biogeographic importance of this region for the exchange of fauna and flora. The findings also highlight the importance of continued field work along the biogeographic interchange of the Banjaran Nakawan that separates southwestern Thailand from northwestern Peninsular Malaysia and the need to sample and collect voucher specimens that can be deposited in proper scientific collections for current and future research.
  6. Zou B, Anuar MSS, Low TJ, Hong Z, Grismer LL, Quah ESH
    Zootaxa, 2024 Jan 11;5399(2):163-171.
    PMID: 38221166 DOI: 10.11646/zootaxa.5399.2.5
    Limnonectes hascheanus and Limnonectes limborgi are two very similar-looking and closely related species and are sometimes referred to as the Limnonectes hascheanus-limborgi complex (Inger & Stuart 2010). Inger & Stuart (2010) tackled the systematics of the complex and confirmed the status of L. limborgi as a distinct species and not a junior synonym to L. hascheanus by providing molecular data and morphological characters of its distinctiveness. The geographic ranges of the two species were also reported to be distinct where L. hascheanus is mainly restricted to the southern part of the Thai-Malay Peninsula while L. limborgi is distributed from southern Myanmar north into northern Thailand and Laos before curving around into central Laos, northeastern Thailand, Cambodia, and southern Vietnam (Inger & Stuart 2010).
  7. Grismer LL, Anuar MSS, Muin MA, Ahmad N, Quah ESH
    Zootaxa, 2023 Oct 10;5353(3):265-275.
    PMID: 38220685 DOI: 10.11646/zootaxa.5353.3.4
    We use data sets from the Cyrtodactylus brevipalmatus group with limited genetic and morphological sampling to demonstrate that not accounting for sampling error may adversely influence decisions regarding species delimitation and diagnosis. Lack of geographic sampling between the endpoints of a species range may recover notable interpopulational genetic differentiation consistent with species-level differentiation. Additionally, small population sample sizes may fail recover statistically different diagnostic morphological differences. Combined, these types of sampling error can produce results seemingly consistent with the recognition of cryptic speciesgenetically delimited populations lacking diagnostic morphological characters. This is the current situation within some lineages of the C. brevipalmatus group whereas in others, sampling error is less problematic and does not jeopardize their taxonomy. We note the potential negative effects for comparative biology as a whole if sampling error is not taken into consideration prior to constructing taxonomies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links