Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
This study presents an innovative method for synthesizing activated carbon with an exceptionally high surface area (3359 m2 g-1) using kenaf fiber-based biochar through chemical activation. The achieved specific surface area surpasses activated carbon derived from other reported fiber-based precursors. The resulting activated carbon was investigated as electrodes for supercapacitors, revealing a remarkable maximum capacitance of 312 F g-1 at a current density of 0.5 A g-1. An aqueous symmetric supercapacitor employing these high-surface-area electrodes exhibited an outstanding energy density of 18.9 Wh kg-1 at a power density of 250 W kg-1. Notably, the supercapacitor retained exceptional capacitance, maintaining 93% of its initial capacitance even after 5000 charge-discharge cycles.
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10(-3) J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
This paper presents a piezoelectric wind energy harvester that operates by a galloping mechanism with different shaped attachments attached to a bluff body. A comparison is made between harvesters that consist of different shaped attachments on a bluff body; these include triangular, circular, square, Y-shaped, and curve-shaped attachments. Simulation of the pressure field and the velocity field variation around the different shaped bluff bodies is performed and it is found that a high pressure difference creates a high lift force on the bluff body with curve-shaped attachments. A theoretical model based on a galloping mechanism is presented, which is verified by experiments. It is observed that the proposed harvester with curve-shaped attachments provides the best performance, where the harvester with a curve-shaped attachments provides the highest voltage and power output compared to the other shaped harvesters examined in this study. This paper provides a new concept for improving the power performance of the piezoelectric wind energy harvesters with modifications made on the bluff body.
Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe challenge for orthopaedic and reconstructive bone tissue. We synthesized polymeric composite material from arabinoxylan (ARX), β-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO), acrylic acid (AAc) through free radical polymerization and porous scaffold fabricated using the freeze-drying technique. These fabricated porous scaffolds were then coated with chitosan solution to enhance their biological activities. The complex structure of BG, nHAp, GO was studied through various characterization and biological assays. The structural, morphological, wetting and mechanical analyses were determined using FT-IR, XRD, XPS, SEM/EXD, water contact angle and UTM. The swelling (aqueous and PBS media) and degradation (PBS media) observed their behavior in contact with body fluid. The biological activities were conducted against mouse pre-osteoblast cell lines. The result found that BGH3 has desirable morphological, structural with optimum swelling, degradation, and mechanical behavior. It was also found to be cytocompatible against MC3T3-E1 cell lines. The obtained results confirmed that the fabricated polymeric scaffolds would be a potential bone substitute to regenerate defective bone with different loading bearing applications for bone tissue engineering.
The aim of this study is to prepare a dual layer polyvinyl (PVA) patch using a combination of electrospinning techniques and cryogelation (freeze-thaw process) then subsequently to investigate the effect of freeze-thaw cycles, nanofiber thickness, and diclofenac sodium (DS) loading on the physicochemical and mechanical properties and formulation of dual layer PVA patches composed of electrospun PVA nanofibers and PVA cryogel. After the successful preparation of the dual layer PVA patch, the prepared patch was subjected to investigation to assess the effect of freeze-thaw cycles, nanofiber thickness and percentages of DS loading on the morphology, physiochemical and mechanical properties. Various spectroscopic techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), water contact angle, and tensile tests were used to evaluate the physicochemical and mechanical properties of prepared dual layer PVA patches. The morphological structures of the dual layer PVA patch demonstrated the effectiveness of both techniques. The effect of freeze-thaw cycles, nanofiber thickness, and DS percentage loading on the crystallinity of a dual layer PVA patch was investigated using XRD analysis. The presence of a distinct DS peak in the FTIR spectrum indicates the compatibility of DS in a dual layer PVA patch through in-situ loading. All prepared patches were considered highly hydrophilic because the data obtained was less than 90°. The increasing saturation of DS within the PVA matrix increases the tensile strength of prepared patches, however decreased its elasticity. Evidently, the increasing of electrospun PVA nanofibers thickness, freeze-thaw cycles, and the DS saturation has improved the physicochemical and mechanical properties of the DS medicated dual layer PVA patches, making them a promising biomaterial for transdermal drug delivery applications.
The composite hydrogels were produced using the solution casting method due to the non-toxic and biocompatible nature of chitosan (CS)/polyvinyl alcohol (PVA). The best composition was chosen and crosslinked with tetraethyl orthosilicate (TEOS), after which different amounts of graphene oxide (GO) were added to develop composite hydrogels. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle was used to analyze the hydrogels. The samples were also evaluated for swelling abilities in various mediums. The drug release profile was studied in phosphate-buffered saline (PBS) at a pH of 7.4. To predict the mechanism of drug release, the data were fitted into kinetic models. Finally, antibacterial activity and cell viability data were obtained. FTIR studies revealed the successful synthesis of CS/PVA hydrogels and GO/CS/PVA in hydrogel composite. SEM showed no phase separation of the polymers, whereas AFM showed a decrease in surface roughness with an increase in GO content. 100 µL of crosslinker was the critical concentration at which the sample displayed excellent swelling and preserved its structure. Both the crosslinked and composite hydrogel showed good swelling. The most acceptable mechanism of drug release is diffusion-controlled, and it obeys Fick's law of diffusion for drug released. The best fitting of the zero-order, Hixson-Crowell and Higuchi models supported our assumption. The GO/CS/PVA hydrogel composite showed better antibacterial and cell viability behaviors. They can be better biomaterials in biomedical applications.
The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC's fibre collapse phenomenon (i.e., its inability to reabsorb water after dehydration) is one of the drawbacks that limit its potential. To overcome this, a catalyst-free thermal crosslinking reaction was employed to modify BC using citric acid (CA) without compromising its biocompatibility. FTIR, XRD, SEM/EDX, TGA, and tensile analysis were carried out to evaluate the properties of the modified BC (MBC). The results confirm the fibre crosslinking phenomenon and the improvement of some properties that could be advantageous for various applications. The modified nanofibre displayed an improved crystallinity and thermal stability with increased water absorption/swelling and tensile modulus. The MBC reported here can be used for wound dressings and tissue scaffolding.
Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.