Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.
Tuberculosis (TB) is the world's second-deadliest infectious disease. Despite the availability of drugs to cure TB, control of TB is hampered by the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). The presence of MDR/XDR-TB is alarming due to the low detection rate, high treatment failure, and high mortality. The increasing cases of MDR/XDR-TB are mainly due to the limitations in the diagnostic tests to detect the drug susceptibility of the pathogen, which contribute to the spread of the disease through close contacts. Moreover, inconsistent drug therapy or unsuitable drug regimens could also lead to the subsequent development of drug resistance. The close contacts of an index MDR/XDR-TB patient are at increased risk of developing MDR/XDR-TB. Also, the BCG vaccine may exhibit varying protective effects due to BCG strain diversification, host immune status, exposure to environmental non-tuberculous mycobacteria (NTM), and differences in Mycobacterium tuberculosis (Mtb) subspecies infection, as in the case of sub-optimal protection in the case of Beijing family genotypes of Mtb. This review provides an overview of the current state of drug-resistant tuberculosis (DR-TB) within the context of the global TB pandemic, with a focus on diagnosis, treatment, and the potential impact of BCG vaccination. It highlights the limitations of current approaches and aims to identify opportunities for improving TB control strategies.