Displaying all 2 publications

Abstract:
Sort:
  1. Kasim S, Amir Rudin PNF, Malek S, Ibrahim KS, Wan Ahmad WA, Fong AYY, et al.
    Sci Rep, 2024 May 29;14(1):12378.
    PMID: 38811643 DOI: 10.1038/s41598-024-61151-x
    The accurate prediction of in-hospital mortality in Asian women after ST-Elevation Myocardial Infarction (STEMI) remains a crucial issue in medical research. Existing models frequently neglect this demographic's particular attributes, resulting in poor treatment outcomes. This study aims to improve the prediction of in-hospital mortality in multi-ethnic Asian women with STEMI by employing both base and ensemble machine learning (ML) models. We centred on the development of demographic-specific models using data from the Malaysian National Cardiovascular Disease Database spanning 2006 to 2016. Through a careful iterative feature selection approach that included feature importance and sequential backward elimination, significant variables such as systolic blood pressure, Killip class, fasting blood glucose, beta-blockers, angiotensin-converting enzyme inhibitors (ACE), and oral hypoglycemic medications were identified. The findings of our study revealed that ML models with selected features outperformed the conventional Thrombolysis in Myocardial Infarction (TIMI) Risk score, with area under the curve (AUC) ranging from 0.60 to 0.93 versus TIMI's AUC of 0.81. Remarkably, our best-performing ensemble ML model was surpassed by the base ML model, support vector machine (SVM) Linear with SVM selected features (AUC: 0.93, CI: 0.89-0.98 versus AUC: 0.91, CI: 0.87-0.96). Furthermore, the women-specific model outperformed a non-gender-specific STEMI model (AUC: 0.92, CI: 0.87-0.97). Our findings demonstrate the value of women-specific ML models over standard approaches, emphasizing the importance of continued testing and validation to improve clinical care for women with STEMI.
  2. Kasim S, Amir Rudin PNF, Malek S, Aziz F, Wan Ahmad WA, Ibrahim KS, et al.
    PLoS One, 2024;19(2):e0298036.
    PMID: 38358964 DOI: 10.1371/journal.pone.0298036
    BACKGROUND: Traditional risk assessment tools often lack accuracy when predicting the short- and long-term mortality following a non-ST-segment elevation myocardial infarction (NSTEMI) or Unstable Angina (UA) in specific population.

    OBJECTIVE: To employ machine learning (ML) and stacked ensemble learning (EL) methods in predicting short- and long-term mortality in Asian patients diagnosed with NSTEMI/UA and to identify the associated features, subsequently evaluating these findings against established risk scores.

    METHODS: We analyzed data from the National Cardiovascular Disease Database for Malaysia (2006-2019), representing a diverse NSTEMI/UA Asian cohort. Algorithm development utilized in-hospital records of 9,518 patients, 30-day data from 7,133 patients, and 1-year data from 7,031 patients. This study utilized 39 features, including demographic, cardiovascular risk, medication, and clinical features. In the development of the stacked EL model, four base learner algorithms were employed: eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF), with the Generalized Linear Model (GLM) serving as the meta learner. Significant features were chosen and ranked using ML feature importance with backward elimination. The predictive performance of the algorithms was assessed using the area under the curve (AUC) as a metric. Validation of the algorithms was conducted against the TIMI for NSTEMI/UA using a separate validation dataset, and the net reclassification index (NRI) was subsequently determined.

    RESULTS: Using both complete and reduced features, the algorithm performance achieved an AUC ranging from 0.73 to 0.89. The top-performing ML algorithm consistently surpassed the TIMI risk score for in-hospital, 30-day, and 1-year predictions (with AUC values of 0.88, 0.88, and 0.81, respectively, all p < 0.001), while the TIMI scores registered significantly lower at 0.55, 0.54, and 0.61. This suggests the TIMI score tends to underestimate patient mortality risk. The net reclassification index (NRI) of the best ML algorithm for NSTEMI/UA patients across these periods yielded an NRI between 40-60% (p < 0.001) relative to the TIMI NSTEMI/UA risk score. Key features identified for both short- and long-term mortality included age, Killip class, heart rate, and Low-Molecular-Weight Heparin (LMWH) administration.

    CONCLUSIONS: In a broad multi-ethnic population, ML approaches outperformed conventional TIMI scoring in classifying patients with NSTEMI and UA. ML allows for the precise identification of unique characteristics within individual Asian populations, improving the accuracy of mortality predictions. Continuous development, testing, and validation of these ML algorithms holds the promise of enhanced risk stratification, thereby revolutionizing future management strategies and patient outcomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links