Displaying all 11 publications

Abstract:
Sort:
  1. Roney M, Issahaku AR, Aluwi MFFM
    In Silico Pharmacol, 2023;11(1):36.
    PMID: 37994367 DOI: 10.1007/s40203-023-00176-y
    The finest sources of therapeutic agents are natural products, and usnic acid is a secondary metabolite derived from lichen that has a wide range of biological actions, including anti-viral, anti-cancer, anti-bacterial, and anti-diabetic (hyperglycemia). Based on the hyperglycemia activity of UA, this work seeks to identify new anti-hyperglycemia medicines by virtual screening of pyrazole derivatives of UA. Seven hit compounds (Compounds 1, 5, 6, 7, 17, 18 and 33), which finally go through docking-based screening to produce the lead molecule, were identified by the physicochemical attributes, drug-likeliness, and ADMET prediction. The docking score for the chosen compounds containing PPARγ agonists ranged from -7.6 to -9.2 kcal/mol, whereas the docking goal for compounds 5, 6, and 7 was -9.2 kcal/mol. Based on the binding energy and bound amino acid residues as well as compared to the reference compound, compound-6 considered as lead compound. Furthermore, the MD simulation of 3CS8-Compound-6 and 3CS8-Rosiglitazone complexes were performed to verify the stability of these complexes and the binding posture acquired in docking experiments. The compound-6 had strong pharmacological characteristics, bound to the PPARγ agonist active site, and was expected to reduce the activity of the receptor, according to the virtual screening results. It must be justified to conduct both in-vitro and in-vivo experiments to examine the efficacy of this compound.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-023-00176-y.

  2. Alam I, Forid MS, Roney M, Aluwi MFFM, Huq AM
    Data Brief, 2021 Apr;35:106839.
    PMID: 33659597 DOI: 10.1016/j.dib.2021.106839
    The current data report describes the predictive identification of phytochemical constituents in the bioactive extract of Ipomoea mauritiana (IM) whole plant. For several formulations this plant was commonly used as 'Vidari' for Ayurvedic medicine. Traditionally, IM tubers are used to alleviate spinal cord pain, improve breast milk, as a tonic, increase sperm count and treating jaundice. The methanol extract can potentially scavenge free radicals and possess antibacterial activity that could be correlated with its chemical composition. So it is crucial to identify the major compounds of IM. An ultra-performance liquid chromatography coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF/MS) method was adopted to detect the flavonoids, saponins, alkaloids, terpenoids in IM methanol extract. Data presented here is related to a published work Antioxidant and antibacterial activity of Ipomoea mauritiana Jacq.: A traditionally used medicinal plant in Bangladesh (Alam et al., 2020). Secondary metabolites were analyzed by the comparison of the mass fragmentation arrangements with Waters UNIFI library that enables for positive identification of the compounds based on the spectral match.
  3. Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM
    J Biomol Struct Dyn, 2023 Nov 01.
    PMID: 37909584 DOI: 10.1080/07391102.2023.2276879
    The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
  4. Roney M, Issahaku AR, Govinden U, Gazali AM, Aluwi MFFM, Zamri NB
    J Biomol Struct Dyn, 2023 Nov 09.
    PMID: 37942697 DOI: 10.1080/07391102.2023.2279280
    To restore the integrity of the skin and subcutaneous tissue, the wound healing process involves a complex series of well-orchestrated biochemical and cellular events. Due to the existence of various active components, accessibility and few side effects, some plant extracts and their phytoconstituents are recognised as viable options for wound healing agents. To find possible inhibitors of diabetic wound healing, four main constituents of aloe vera were identified from the literature. TGF-β1 and the compounds were studied using molecular docking to see how they interacted with the active site of target protein (PDB ID: 6B8Y). The pharmacokinetics investigation of the aloe emodin with the highest dock score complied with all the Lipinski's rule of five and pharmacokinetics criteria. Conformational change in the docked complex of Aloe emodin was investigated with the Amber simulation software, via a molecular dynamic (MD) simulation. The MD simulations of aloe emodin bound to TGF-β1 showed the significant structural rotations and twists occurring from 0 to 200 ns. The estimate of the aloe emodin-TGF-β1 complex's binding free energy has also been done using MM-PBSA/GBSA techniques. Additionally, aloe emodin has a wide range of enzymatic activities since their probability active (Pa) values is >0.700. 'Aloe emodin', an active extract of aloe vera, has been identified as the key chemical in the current investigation that can inhibit diabetic wound healing. Both in-vitro and in-vivo experiments will be used in a wet lab to confirm the current computational findings.Communicated by Ramaswamy H. Sarma.
  5. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
  6. Roney M, Dubey A, Issahaku AR, Uddin MN, Tufail A, Wilhelm A, et al.
    J Biomol Struct Dyn, 2024 Jan 23.
    PMID: 38260948 DOI: 10.1080/07391102.2024.2306197
    The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.Communicated by Ramaswamy H. Sarma.
  7. Wong KKV, Roney M, Uddin N, Imran S, Gazali AM, Zamri N, et al.
    J Biomol Struct Dyn, 2023;41(23):13632-13645.
    PMID: 36794726 DOI: 10.1080/07391102.2023.2178506
    Usnic acid (UA) lately piqued the interest of researchers for its extraordinary biological characteristics, including anticancer activity. Here, the mechanism was clarified through network pharmacology,molecular docking and molecular dynamic simulation. Sixteen proteins were selected through network pharmacology study as they are probable to interact with UA. Out of these proteins, 13 were filtered from PPI network analysis based on their significance of interactions (p 
  8. Roney M, Singh G, Huq AKMM, Forid MS, Ishak WMBW, Rullah K, et al.
    Mol Biotechnol, 2024 Apr;66(4):696-706.
    PMID: 36752937 DOI: 10.1007/s12033-023-00667-5
    The infection produced by the SARS-CoV-2 virus remains a significant health crisis worldwide. The lack of specific medications for COVID-19 necessitates a concerted effort to find the much-desired therapies for this condition. The main protease (Mpro) of SARS-CoV-2 is a promising target, vital for virus replication and transcription. In this study, fifty pyrazole derivatives were tested for their pharmacokinetics and drugability, resulting in eight hit compounds. Subsequent molecular docking simulations on SARS-CoV-2 main protease afforded two lead compounds with strong affinity at the active site. Additionally, the molecular dynamics (MD) simulations of lead compounds (17 and 39), along with binding free energy calculations, were accomplished to validate the stability of the docked complexes and the binding poses achieved in docking experiments. Based on these findings, compound 17 and 39, with their favorable projected pharmacokinetics and pharmacological characteristics, are the proposed potential antiviral candidates which require further investigation to be used as anti-SARS-CoV-2 medication.
  9. Huq AKMM, Roney M, Imran S, Khan SU, Uddin MN, Htar TT, et al.
    J Biomol Struct Dyn, 2023;41(23):13923-13936.
    PMID: 36786766 DOI: 10.1080/07391102.2023.2176926
    Since the first prevalence of COVID-19 in 2019, it still remains the most devastating pandemic throughout the world. The current research aimed to find potential natural products to inhibit the novel coronavirus and associated infection by MD simulation and network pharmacology approach. Molecular docking was performed for 39 natural products having potent anti-SARS-CoV activity. Five natural products showed high binding interaction with the viral main protease for the SARS-CoV-2 virus, where 3β,12-diacetoxyabieta-6,8,11,13 tetraene showed stable binding in MD simulation until 100 ns. Both 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A targeted 11 common genes that are related to COVID-19 and interact with each other. Gene ontology development analysis further showed that all these 11 genes are attached to various biological processes. The KEGG pathway analysis also showed that the proteins that are targeted by 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A are associated with multiple pathways related to COVID-19 infection. Furthermore, the ADMET and MDS studies reveals 3β,12-diacetoxyabieta-6,8,11,13 as the best-suited compound for oral drug delivery.Communicated by Ramaswamy H. Sarma.
  10. Huq AKMM, Roney M, Dubey A, Nasir MH, Tufail A, Aluwi MFFM, et al.
    PLoS One, 2024;19(3):e0299238.
    PMID: 38483871 DOI: 10.1371/journal.pone.0299238
    BACKGROUND: Currently, there is no antiviral medication for dengue, a potentially fatal tropical infectious illness spread by two mosquito species, Aedes aegypti and Aedes albopictus. The RdRp protease of dengue virus is a potential therapeutic target. This study focused on the in silico drug discovery of RdRp protease inhibitors.

    METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment.

    RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A.

    CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links