Displaying all 8 publications

Abstract:
Sort:
  1. Rakib MRJ, Jolly YN, Enyoh CE, Khandaker MU, Hossain MB, Akther S, et al.
    Sci Rep, 2021 07 19;11(1):14642.
    PMID: 34282166 DOI: 10.1038/s41598-021-93989-w
    As a cheap source of high-quality protein, healthy fats and essential nutrients, dried fish is a common item in the daily diet of the Bangladesh populace. In this study, ten types of widely consumed dried fish (H. neherius, T. lepturu, P.chinensis, P. affinis, A. mola, P. microdon, I. megaloptera, C. dussumieri, L. calcarifer, and G. chapra) were analyzed for Cr, Mn, Fe, Co, Cu, Zn, Se, Rb, Hg, Pb, Ni and As by using an Energy Dispersive X-ray Fluorescence (EDXRF) technique. The concentration of the studied metals was found in the order Fe > Zn > Hg > Cu > Se > Cr > Mn > Co > Rb > Pb, while As and Ni were below the limit of detection. All fish species showed moderate to high pollution, where the species H. Neherius and P. Chinensis are the most and least polluted ones, respectively. The probable source of contamination is the leaching from the drying pans into the fish samples, atmospheric deposition, anthropogenic contamination, etc. of the water body where these fish were harvested. The calculated hazard index for the general population was below the maximum limiting value (i.e., 
  2. Muhammad N, Sarfraz Z, Zafar MS, Liaqat S, Rahim A, Ahmad P, et al.
    J Mater Sci Mater Med, 2022 Jan 24;33(2):17.
    PMID: 35072817 DOI: 10.1007/s10856-022-06645-8
    Acrylic resins-based artificial teeth are frequently used for the fabrication of dentures has and contribute a very strong share in the global market. However, the scientific literature reporting the comparative analysis data of various artificial teeth is scarce. Focusing on that, the present study investigated various types of commercially available artificial teeth, composed of polymethyl methacrylate (PMMA). Artificial teeth are characterized for chemical analysis, morphological features, thermal analysis, and mechanical properties (surface hardness, compressive strength). Different types of artificial teeth showed distinct mechanical (compression strength, Vickers hardness) and thermal properties (thermal gravimetric analysis) which may be attributed to the difference in the content of PMMA and type and quantity of different fillers in their composition. Thermogravimetric analysis (TGA) results exhibited that vinyl end groups of PMMA degraded above 200 °C, whereas 340-400 °C maximum degradation temperature was measured by differential thermal analysis (DTA) for all samples. Crisma brand showed the highest compressive strength and young modulus (88.6 MPa and 1654 MPa) while the lowest value of Vickers hardness was demonstrated by Pigeon and Vital brands. Scanning electron microscope (SEM) photographs showed that Crisma, Pigeon, and Vital exhibited characteristics of a brittle fracture; however, Artis and Well bite brands contained elongated voids on their surfaces. According to the mechanical analysis and SEM data, Well bite teeth showed a significantly higher mechanical strength compared to other groups. However, no considerable difference was observed in Vickers hardness of all groups. Graphical abstract.
  3. Elsafi M, Dib MF, Mustafa HE, Sayyed MI, Khandaker MU, Alsubaie A, et al.
    Materials (Basel), 2021 Dec 19;14(24).
    PMID: 34947471 DOI: 10.3390/ma14247878
    We prepared red clays by introducing different percentages of PbO, Bi2O3, and CdO. In order to understand how the introduction of these oxides into red clay influences its attenuation ability, the mass attenuation coefficient of the clays was experimentally measured in a lab using an HPGe detector. The theoretical shielding capability of the material present was obtained using XCOM to verify the accuracy of the experimental results. We found that the experimental and theoretical values agree to a very high degree of precision. The effective atomic number (Zeff) of pure red clay, and red clay with the three metal oxides was determined. The pure red clay had the lowest Zeff of the tested samples, which means that introducing any of these three oxides into the clay will greatly enhance its Zeff, and consequently its attenuation capability. Additionally, the Zeff for red clay with 10 wt% CdO is lower than the Zeff of red clay with 10 wt% Bi2O3 and PbO. We also prepared red clay using 10 wt% CdO nanoparticles and compared its attenuation ability with the red clay prepared with 10 wt% PbO, Bi2O3, and CdO microparticles. We found that the MAC of the red clay with 10 wt% nano-CdO was higher than the MAC of the clay with microparticle samples. Accordingly, nanoparticles could be a useful way to enhance the shielding ability of current radiation shielding materials.
  4. Khandaker MU, Chijioke NO, Heffny NAB, Bradley DA, Alsubaie A, Sulieman A, et al.
    Foods, 2021 Feb 10;10(2).
    PMID: 33578933 DOI: 10.3390/foods10020381
    While the consumption of seaweed and seaweed-based products is very common amongst East Asian nations, forming a notable component of the daily diet, relatively very few studies have concerned the concentrations of heavy metals in these together with potential effects on human health. The present study analyses the concentrations of 17 elements in locally resourced seaweed, also assessing potential noncarcinogenic and carcinogenic risks. The samples were ground, homogenized, and quantified using the ICP-OES technique. It has been found that the essential elements K, Ca, Mg, Zn, and Na typically show concentrations somewhat greater than a number of potentially toxic metals, in particular, Cd, Pb, Ag, and As, with exceptions being Ni, Cr-VI, and Si. Statistical analysis indicates all of the latter to have similar origin, with increased concentration of these metals within the marine ecosystem. While the daily estimated intake of most metals is seen to be within the daily dietary allowance level recommended by various international organizations, the noncarcinogenic risk shows a value greater than unity, estimated via the hazard quotient. This indicates a potential for adverse effects to health arising from consumption of the sampled seaweed. The carcinogenic risk resulting from nonessential elements shows values greater than the United States Environmental Protection Agency (US-EPA) reference limit of 10-4. Considering the nonbiodegradability of heavy metals and metalloids and their potential accumulation in seaweed, there is need for critical examination of metal levels in the seaweeds obtained from the present study locations, together with the introduction of practices of removal of heavy metals via bio-adsorbent techniques.
  5. Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al.
    Sci Rep, 2021 10 25;11(1):20999.
    PMID: 34697391 DOI: 10.1038/s41598-021-99750-7
    Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
  6. Absar N, Abedin J, Rahman MM, Miah MH, Siddique N, Kamal M, et al.
    Life (Basel), 2021 Mar 27;11(4).
    PMID: 33801699 DOI: 10.3390/life11040282
    Considering the probable health risks due to radioactivity input via drinking tea, the concentrations of 226Ra, 232Th,40K and 137Cs radionuclides in the soil and the corresponding tea leaves of a large tea plantation were measured using high purity germanium (HPGe) γ-ray spectrometry. Different layers of soil and fresh tea leaf samples were collected from the Udalia Tea Estate (UTE) in the Fatickchari area of Chittagong, Bangladesh. The mean concentrations (in Bq/kg) of radionuclides in the studied soil samples were found to be 34 ± 9 to 45 ± 3 for 226Ra, 50 ± 13 to 63 ± 5 for 232Th, 245 ± 30 to 635 ± 35 for 40K and 3 ± 1 to 10 ± 1 for 137Cs, while the respective values in the corresponding tea leaf samples were 3.6 ± 0.7 to 5.7 ± 1.0, 2.4 ± 0.5 to 5.8 ± 0.9, 132 ± 25 to 258 ± 29 and <0.4. The mean transfer factors for 226Ra, 232Th and 40K from soil to tea leaves were calculated to be 0.12, 0.08 and 0.46, respectively, the complete range being 1.1 × 10-2 to 1.0, in accordance with IAEA values. Additionally, the most popularly consumed tea brands available in the Bangladeshi market were also analyzed and, with the exception of 40K, were found to have similar concentrations to the fresh tea leaves collected from the UTE. The committed effective dose via the consumption of tea was estimated to be low in comparison with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reference ingestion dose limit of 290 μSv/y. Current indicative tea consumption of 4 g/day/person shows an insignificant radiological risk to public health, while cumulative dietary exposures may not be entirely negligible, because the UNSCEAR reference dose limit is derived from total dietary exposures. This study suggests a periodic monitoring of radiation levels in tea leaves in seeking to ensure the safety of human health.
  7. Rakib MRJ, Al Nahian S, Alfonso MB, Khandaker MU, Enyoh CE, Hamid FS, et al.
    Sci Rep, 2021 Nov 30;11(1):23187.
    PMID: 34848770 DOI: 10.1038/s41598-021-02457-y
    Microplastics (MP) were recognized as an emergent pollution problem due to their ubiquitous nature and bioaccumulative potential. Those present in salt for consumption could represent a human exposure route through dietary uptake. The current study, conducted in Bangladesh, reports microplastics contamination in coarse salt prepared for human consumption. Sea salt samples were collected from eight representative salt pans located in the country's largest salt farming area, in the Maheshkhali Channel, along the Bay of Bengal. Microplastics were detected in all samples, with mean concentrations ranging from 78 ± 9.33 to 137 ± 21.70 particles kg-1, mostly white and ranging in size from 500-1000 µm. The prevalent types were: fragments (48%) > films (22%) > fibers (15%) > granules and lines (both 9%). Fourier transform mid-IR and near-IR spectra (FT-MIR-NIR) analysis registered terephthalate (48%), polypropylene (20%), polyethylene (17%), and polystyrene (15%) in all samples. These results contribute to the MP's pollution knowledge in sea salts to understand and reduce this significant human exposure route and environmental pollution source in the future.
  8. Dutta M, Tareq AM, Rakib A, Mahmud S, Sami SA, Mallick J, et al.
    Biology (Basel), 2021 Aug 17;10(8).
    PMID: 34440024 DOI: 10.3390/biology10080789
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a contemporary coronavirus, has impacted global economic activity and has a high transmission rate. As a result of the virus's severe medical effects, developing effective vaccinations is vital. Plant-derived metabolites have been discovered as potential SARS-CoV-2 inhibitors. The SARS-CoV-2 main protease (Mpro) is a target for therapeutic research because of its highly conserved protein sequence. Gas chromatography-mass spectrometry (GC-MS) and molecular docking were used to screen 34 compounds identified from Leucas zeylanica for potential inhibitory activity against the SARS-CoV-2 Mpro. In addition, prime molecular mechanics-generalized Born surface area (MM-GBSA) was used to screen the compound dataset using a molecular dynamics simulation. From molecular docking analysis, 26 compounds were capable of interaction with the SARS-CoV-2 Mpro, while three compounds, namely 11-oxa-dispiro[4.0.4.1]undecan-1-ol (-5.755 kcal/mol), azetidin-2-one 3,3-dimethyl-4-(1-aminoethyl) (-5.39 kcal/mol), and lorazepam, 2TMS derivative (-5.246 kcal/mol), exhibited the highest docking scores. These three ligands were assessed by MM-GBSA, which revealed that they bind with the necessary Mpro amino acids in the catalytic groove to cause protein inhibition, including Ser144, Cys145, and His41. The molecular dynamics simulation confirmed the complex rigidity and stability of the docked ligand-Mpro complexes based on the analysis of mean radical variations, root-mean-square fluctuations, solvent-accessible surface area, radius of gyration, and hydrogen bond formation. The study of the postmolecular dynamics confirmation also confirmed that lorazepam, 11-oxa-dispiro[4.0.4.1]undecan-1-ol, and azetidin-2-one-3, 3-dimethyl-4-(1-aminoethyl) interact with similar Mpro binding pockets. The results of our computerized drug design approach may assist in the fight against SARS-CoV-2.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links