Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Pisal MH, Osman AF, Jin TS, Rahman RA, Alrashdi AA, Masa A
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671304 DOI: 10.3390/polym13040600
    Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix.
  2. Lai DS, Osman AF, Adnan SA, Ibrahim I, Alrashdi AA, Ahmad Salimi MN, et al.
    Polymers (Basel), 2021 Mar 15;13(6).
    PMID: 33803984 DOI: 10.3390/polym13060897
    Thermoplastic starch (TPS) hybrid bio-composite films containing microcrystalline cellulose (C) and nano-bentonite (B) as hybrid fillers were studied to replace the conventional non-degradable plastic in packaging applications. Raw oil palm empty fruit bunch (OPEFB) was subjected to chemical treatment and acid hydrolysis to obtain C filler. B filler was ultra-sonicated for better dispersion in the TPS films to improve the filler-matrix interactions. The morphology and structure of fillers were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). TPS hybrid bio-composite films were produced by the casting method with different ratios of B and C fillers. The best ratio of B/C was determined through the data of the tensile test. FTIR analysis proved the molecular interactions between the TPS and the hybrid fillers due to the presence of polar groups in their structure. XRD analysis confirmed the intercalation of the TPS chains between the B inter-platelets as a result of well-developed interactions between the TPS and hybrid fillers. SEM images suggested that more plastic deformation occurred in the fractured surface of the TPS hybrid bio-composite film due to the higher degree of stretching after being subjected to tensile loading. Overall, the results indicate that incorporating the hybrid B/C fillers could tremendously improve the mechanical properties of the films. The best ratio of B/C in the TPS was found to be 4:1, in which the tensile strength (8.52MPa), Young's modulus (42.0 MPa), elongation at break (116.4%) and tensile toughness of the film were increased by 92%, 146%, 156% and 338%, respectively. The significantly improved strength, modulus, flexibility and toughness of the film indicate the benefits of using the hybrid fillers, since these features are useful for the development of sustainable flexible packaging film.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links