OBJECTIVES: To review the evidence on the application of the new VAE surveillance definition in paediatric population and examine the potential challenges in clinical practice.
REVIEW METHODS: A systematic approach was used to locate and synthesise the relevant paediatric literature. Studies were appraised according to epidemiological appraisal instrument (EAI) and the grades of evidence in the National Health Medical Research Council (NHMRC) guidelines.
RESULTS: Seven studies met the inclusion criteria. Quality of study methods was above 50% on the EAI. The overall grade of evidence was assessed as C (satisfactory). The incidence of VAE in children ranged from 1.1 to 20.9 per 1000 ventilator days as a result of variations in surveillance criteria across included studies. There is little agreement between the new VAE and PNU/VAP surveillance definition in the identification of VAP. Challenges in the application of VAE surveillance were related to; the difference in modes of ventilation used in children versus adults, inconclusive criteria tailored to paediatric samples and a lack of data that support for automatic data extraction applied in paediatric studies.
CONCLUSION: This review demonstrated promising evidence using the new VAE surveillance definition to define the VAE in children, but the level of the evidence is low. Before the possibility of real implementation in clinical settings, challenges related to VAE paediatric specific criteria' and the value of automated data collection need to be considered.
Methods: Chemical profiling of P. blanda was carried out using gas chromatography mass spectrometry (GCMS) followed by isolation of bioactive compounds by column chromatography. DPPH• and FRAP assays were used to evaluate antioxidant activity and the MTT assay was performed to estimate the cytotoxicity activity against three cancer cell lines, namely MCF-7, HL-60 and WEHI-3, and three normal cell lines, MCF10A, WRL-68 and HDFa.
Results: X-ray crystallographic data for peperomin A is reported for the first time here and N,N'-diphenethyloxamide was isolated for the first time from Peperomia blanda. Methanol and dichloromethane extracts showed high radical scavenging activity with an IC50 of 36.81 ± 0.09 µg/mL, followed by the dichloromethane extract at 61.78 ± 0.02 µg/mL, whereas the weak ferric reducing activity of P. blanda extracts ranging from 162.2 ± 0.80 to 381.5 ± 1.31 µg/mL were recorded. In addition, petroleum ether crude extract exhibited the highest cytotoxic activity against all the tested cancer cell lines with IC50 values of 9.54 ± 0.30, 4.30 ± 0.90 and 5.39 ± 0.34 µg/mL, respectively. Peperomin A and the isolated mixture of phytosterol (stigmasterol and β-sitosterol) exhibited cytotoxic activity against MCF-7 and WE-HI cell lines with an IC50 of (5.58 ± 0.47, 4.62 ± 0.03 µg/mL) and (8.94 ± 0.05, 9.84 ± 0.61 µg/mL), respectively, compared to a standard drug, taxol, that has IC50 values of 3.56 ± 0.34 and 1.90 ± 0.9 µg/mL, respectively.
Conclusion: The activities of P. blanda extracts and isolated compounds recorded in this study underlines the potential that makes this plant a valuable source for further study on anticancer and antioxidant activities.