Response surface methodology-Box–Behnken design (RSM-BBD) was employed to optimize the methyl orange (MO) dye removal efficiency from aqueous solution by cross-linked chitosan-tripolyphosphate/nano-titania compsite (Chi-TPP/NTC). The influence of pertinent parameters, i.e. A: TiO2 loading (0- 50 %), B: dose (0.04-0.14 g), C: pH (4-10), and D: temperature (30-50 oC) on the MO removal efficiency were tested and optimized using RSM-BBD. The F-values of BBD model for MO removal efficiency was 93.4 (corresponding p-value < 0.0001). The results illustrated that the highest MO removal efficiency (87.27 %) was observed at the following conditions: TiO2 loading (50% TiO2), dose (0.09 g), pH = 4.0, and temperature of 40 oC.
Commercial titanium dioxide Degussa P25 (TiO2) was used for the adsorption of reactive red 120
(RR120) dye in a batch system. The optimization functions such as solution pH (3-12), adsorbent dosage (0.02 g-1.2 g), and initial dye concentration (30-400 mg/L) were studied. The equilibrium adsorption data for RR120 dye was analyzed by two types of isotherm models which are Langmuir and Freundlich models. The adsorption at equilibrium showed a better fit for linear Langmuir isotherm with the adsorption capacity, qmax of 18.62 mg/g at 303 K. The adsorption kinetic was well-described by pseudosecond order model. TiO2 showed a decent outcome due to the ability to adsorb target pollutants with theadded advantage of providing large hydroxyl groups (OH) on the surface of TiO2 so that pollutants can be adsorbed by interacting on the surface of OH.
Cross-linked chitosan-epichlorohydrin was prepared for the adsorption of Reactive Red 4 (RR4).
Response surface methodology (RSM) with 3–level Box-Behnken design (BBD) was employed to
optimize the RR4 dye removal efficiency from aqueous solution. The adsorption key parameters that were selected such as adsorbent dose (A: 0.5 – 1.5 g), pH (B: 4 – 10) and time (30 – 80 min). The F-value of BBD model for RR4 removal efficiency was 185.36 (corresponding p-value < 0.0001). The results illustrated that the highest RR4 removal efficiency (70.53%) was obtained at the following conditions: adsorbent dose (1.0 g), pH 4 and time of 80 min.
Chitosan-epichlorohydrin/TiO2 composite was synthesized to be employed as an adsorbent for the
removal of reactive red 4 (RR4) dye from aqueous solution. Response surface methodology (RSM) with 3-level Box-Behnken design (BBD) was utilized for the optimization of the removal of RR4. The process key variables which include adsorbent dose (A: 0.5 – 1.5 g), pH (B: 4 – 10) and time (30 – 80 min) were selected for the optimization process. The experimental data for RR4 removal were statistically analysed using analysis of variance (ANOVA). The significant interaction between key parameters on RR4 removal efficiency was observed by interaction between AB and AC. The highest RR4 removal (95.08%) was obtained under the following conditions; adsorbent dose (1.0 g), pH 4 and time of 80 min.
Nitrogen doped titanium dioxide (N-doped TiO2
) was synthesized by microwave using urea as nitrogen sources with
commercially available TiO2
-P25. The N-doped TiO2
was compared with unmodified TiO2
by carrying out the investigation
on its properties using x-ray diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET), Fourier transformed infrared
spectroscopy (FTIR) and diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic activities of N-doped TiO2
and unmodified TiO2 were studied for photodegradation of reactive red 4 (RR4) under light emitting diode (LED) light
irradiation. An active photoresponse under LED light irradiation was observed from N-doped TiO2
with 60 min of time
irradiation to complete RR4 color removal while no photocatalytic degradation was observed from unmodified.
In this study, coconut leaves were used as a starting material for the production of activated carbon by thermal
carbonization using FeCl3
-activation method. The characterization of coconut leaves-FeCl3
activated carbon (FAC) were
evaluated by bulk density, ash content, moisture content, point-of-zero charge (pHpzc) analysis, iodine test, scanning
electron microscopy (SEM), Fourier transform infrared (FTIR) and elemental (CHNS-O) analysis. The effect of the adsorbent
dosage (0.02-0.25 g), initial pH (3-11), initial dye concentrations (30-350 mg/L) and contact time (1-180 min) on the
adsorption of the methylene blue (MB) at 303 K was performed via batch experiments. The Pseudo-Second Order (PSO)
describes the kinetic model well whereas the Langmuir isotherm proved that adsorption behavior at equilibrium with
maximum adsorption capacity (qmax) of 66.00 mg/g.