Customer relationship management (CRM) is an innovative technology that seeks to improve customer satisfaction, loyalty, and profitability by acquiring, developing, and maintaining effective customer relationships and interactions with stakeholders. Numerous researches on CRM have made significant progress in several areas such as telecommunications, banking, and manufacturing, but research specific to the healthcare environment is very limited. This systematic review aims to categorise, summarise, synthesise, and appraise the research on CRM in the healthcare environment, considering the absence of coherent and comprehensive scholarship of disparate data on CRM. Various databases were used to conduct a comprehensive search of studies that examine CRM in the healthcare environment (including hospitals, clinics, medical centres, and nursing homes). Analysis and evaluation of 19 carefully selected studies revealed three main research categories: (i) social CRM 'eCRM'; (ii) implementing CRMS; and (iii) adopting CRMS; with positive outcomes for CRM both in terms of patients relationship/communication with hospital, satisfaction, medical treatment/outcomes and empowerment and hospitals medical operation, productivity, cost, performance, efficiency and service quality. This is the first systematic review to comprehensively synthesise and summarise empirical evidence from disparate CRM research data (quantitative, qualitative, and mixed) in the healthcare environment. Our results revealed that substantial gaps exist in the knowledge of using CRM in the healthcare environment. Future research should focus on exploring: (i) other potential factors, such as patient characteristics, culture (of both the patient and hospital), knowledge management, trust, security, and privacy for implementing and adopting CRMS and (ii) other CRM categories, such as mobile CRM (mCRM) and data mining CRM.
Deep neural networks (DNN) have remarkably progressed in applications involving large and complex datasets but have been criticized as a black-box. This downside has recently become a motivation for the research community to pursue the ideas of hybrid approaches, resulting in novel hybrid systems classified as deep neuro-fuzzy systems (DNFS). Studies regarding the implementation of DNFS have rapidly increased in the domains of computing, healthcare, transportation, and finance with high interpretability and reasonable accuracy. However, relatively few survey studies have been found in the literature to provide a comprehensive insight into this domain. Therefore, this study aims to perform a systematic review to evaluate the current progress, trends, arising issues, research gaps, challenges, and future scope related to DNFS studies. A study mapping process was prepared to guide a systematic search for publications related to DNFS published between 2015 and 2020 using five established scientific directories. As a result, a total of 105 studies were identified and critically analyzed to address research questions with the objectives: (i) to understand the concept of DNFS; (ii) to find out DNFS optimization methods; (iii) to visualize the intensity of work carried out in DNFS domain; and (iv) to highlight DNFS application subjects and domains. We believe that this study provides up-to-date guidance for future research in the DNFS domain, allowing for more effective advancement in techniques and processes. The analysis made in this review proves that DNFS-based research is actively growing with a substantial implementation and application scope in the future.
Head-mounted displays (HMDs) have the potential to greatly impact the surgical field by maintaining sterile conditions in healthcare environments. Google Glass (GG) and Microsoft HoloLens (MH) are examples of optical HMDs. In this comparative survey related to wearable augmented reality (AR) technology in the medical field, we examine the current developments in wearable AR technology, as well as the medical aspects, with a specific emphasis on smart glasses and HoloLens. The authors searched recent articles (between 2017 and 2022) in the PubMed, Web of Science, Scopus, and ScienceDirect databases and a total of 37 relevant studies were considered for this analysis. The selected studies were divided into two main groups; 15 of the studies (around 41%) focused on smart glasses (e.g., Google Glass) and 22 (59%) focused on Microsoft HoloLens. Google Glass was used in various surgical specialities and preoperative settings, namely dermatology visits and nursing skill training. Moreover, Microsoft HoloLens was used in telepresence applications and holographic navigation of shoulder and gait impairment rehabilitation, among others. However, some limitations were associated with their use, such as low battery life, limited memory size, and possible ocular pain. Promising results were obtained by different studies regarding the feasibility, usability, and acceptability of using both Google Glass and Microsoft HoloLens in patient-centric settings as well as medical education and training. Further work and development of rigorous research designs are required to evaluate the efficacy and cost-effectiveness of wearable AR devices in the future.