Displaying all 3 publications

Abstract:
Sort:
  1. Alnajar O, Ogilat O, Amourah A, Darus M, Alatawi MS
    Heliyon, 2024 Apr 15;10(7):e28302.
    PMID: 38689983 DOI: 10.1016/j.heliyon.2024.e28302
    Within the scope of this research, we introduce a novel category of bi-univalent functions. Horadam polynomials are utilized to characterize these functions by utilizing series from the Poisson distribution of the Miller-Ross type. Functions from these new categories have been used to construct estimates for the Fekete-Szego functional, as well as estimates of the Taylor-Maclaurin coefficients |l2| and |l3|. These projections were created for the methods in each of these brand-new subclasses. We made some additional discoveries after, focusing on the traits that contributed to our initial findings.
  2. Khan ZUR, Assad N, Naeem-Ul-Hassan M, Sher M, Alatawi FS, Alatawi MS, et al.
    BMC Chem, 2023 Sep 28;17(1):128.
    PMID: 37770921 DOI: 10.1186/s13065-023-01047-5
    In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links