Displaying all 4 publications

Abstract:
Sort:
  1. Mostaffa NH, Suhaimi AH, Al-Idrus A
    Mol Biol Rep, 2023 Mar 15.
    PMID: 36920596 DOI: 10.1007/s11033-023-08345-0
    Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.
  2. Al-Idrus A, Carpentier SC, Ahmad MT, Panis B, Mohamed Z
    PLoS One, 2017;12(6):e0178438.
    PMID: 28575037 DOI: 10.1371/journal.pone.0178438
    With a diverse host range, Meloidogyne incognita (root-knot nematode) is listed as one of the most economically important obligate parasites of agriculture. This nematode species establishes permanent feeding sites in plant root systems soon after infestation. A compatible host-nematode interaction triggers a cascade of morphological and physiological process disruptions of the host, leading to pathogenesis. Such disruption is reflected by altered gene expression in affected cells, detectable using molecular approaches. We employed a high-throughput proteomics approach to elucidate the events involved in a compatible banana- M. incognita interaction. This study serves as the first crucial step in developing natural banana resistance for the purpose of biological-based nematode management programme. We successfully profiled 114 Grand naine root proteins involved in the interaction with M. incognita at the 30th- and 60th- day after inoculation (dai). The abundance of proteins involved in fundamental biological processes, cellular component organisation and stress responses were significantly altered in inoculated root samples. In addition, the abundance of proteins in pathways associated with defence and giant cell maintenance in plants such as phenylpropanoid biosynthesis, glycolysis and citrate cycle were also implicated by the infestation.
  3. Rajendram A, Mostaffa NH, Dumin W, Oke MA, Simarani K, Somasundram C, et al.
    Gene, 2022 Jan 30;809:146041.
    PMID: 34710526 DOI: 10.1016/j.gene.2021.146041
    Plant immunity to pathogen infections is a dynamic response that involves multiple organelles and defence signalling systems such as hypersensitive response (HR) and systemic acquired resistance (SAR). The latter requires the function of Pathogenesis-related (PR) proteins, a common plant protein family with diverse roles in plant innate immunity. Our previous proteomics study showed that a PR gene (ITC1587_Bchr9_P26466_MUSBA) was differentially regulated during a compatible banana-M. incognita interaction, substantiating the isolation of this gene in the current study. Here, we successfully isolated and characterised Pathogenesis-related-10 (PR10) gene with β-1,3-glucanase and ribonuclease (RNase) activities from two Musa acuminata cultivars (denoted as MaPR10) namely Berangan and Grand Naine (ITC1256). We found that MaPR10 cloned sequences possess glycine-rich loop domain and shared conserved motifs specific to PR10 gene group, confirming its identity as a member of this group. Interestingly, we also found a catalytic domain sequence for glycoside hydrolase family 16 (EXDXXE), unique only to MaPR10 cloned sequences. Two peptide variants closely related to the reference sequence ITC1587_Bchr9_P26466_MUSBA namely MaPR10-BeB5 and MaPR10-GNA5 were overexpressed and purified to test for their functionality. Here, we confirmed that both protein variants possess β-1,3-glucanase and ribonuclease (RNase) activities, and inhibit the growth of Aspergillus fumigatus, a human opportunistic pathogen. To our knowledge, this is the first PR10 plant proteins with such properties to be reported thus far.
  4. Suhaimi AH, Rajendram A, Khaidizar FD, Mir P, Pulido-Lucas E, Quirce S, et al.
    Food Funct, 2024 Nov 25;15(23):11715-11725.
    PMID: 39539124 DOI: 10.1039/d4fo03301a
    Pathogenesis-related-10 (PR10) proteins play significant roles in plant defence against biotic and abiotic stresses. Recently, two banana PR10 proteins (MaPR10-BeB5 and MaPR10-GNA5) were characterised and shown to exhibit antifungal properties against Aspergillus fumigatus in vitro. In rice, transgenic overexpression of PR10 proteins conferred resistance to pathogen infection and drought tolerance without affecting productivity, highlighting their potential for agricultural applications. However, PR10 proteins also include the Bet v 1-like family of allergens implicated in pollen food allergy syndromes, raising concerns about potential adverse effects on human health. In this study, we evaluated the allergenic potential of the recently isolated banana PR10 proteins. We first predicted the presence of IgE epitopes of the Bet v 1 allergen family in the deduced PR10 peptide sequences in silico. We then predicted the structures of four human IgE scFv protein sequences and three plant PR10 protein sequences. Based on the quality of the predicted structures, one IgE scFv protein structure was selected for docking with the three plant PR10 proteins. We confirmed the docking results with immunoblot analysis performed using recombinant MaPR10-BeB5 and MaPR10-GNA5 proteins against the sera of banana-allergic patients. Our experimental results substantiated the notion that both protein variants are potentially allergenic since these proteins were recognised by 26.6% of banana-allergic patients with broad PR10 protein recognition. We caution that the allergenic potential of MaPR10 proteins should be carefully considered before implementing transgenic overexpression strategies to improve crops, with a suggestion to limit their expression to non-edible plant tissues.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links