Displaying all 2 publications

Abstract:
Sort:
  1. Al-Fakih GOA, Ilyas RA, Huzaifah MRM, El-Shafay AS
    Int J Biol Macromol, 2024 May 04;269(Pt 1):132045.
    PMID: 38710254 DOI: 10.1016/j.ijbiomac.2024.132045
    Escalating petroleum depletion and environmental crises linked to conventional plastics have fueled interest in eco-friendly alternatives. Natural fibres and biopolymers are garnering increasing attention due to their sustainability. The sago palm (Metroxylon sagu), a tropical tree, holds potential for such materials, with cellulose-rich fibres (42.4-44.12 %) showcasing strong mechanics. Extracted sago palm starch can be blended, reinforced, or plasticised for improved traits. However, a comprehensive review of sago palm fibres, starch, and biocomposites is notably absent. This paper fills this void, meticulously assessing recent advancements in sago palm fibre, cellulose and starch properties, and their eco-friendly composite fabrication. Moreover, it uncovers the latent prospects of sago palm fibres and biopolymers across industries like automotive, packaging, and bioenergy. This review presents a crucial resource for envisaging and realising sustainable materials.
  2. Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, et al.
    Int J Biol Macromol, 2024 Sep 03.
    PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207
    The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links