Although toxic Cd (cadmium) and Cr (chromium) in the aquatic environment are mainly from natural sources, human activities have increased their concentrations. Several studies have reported higher concentrations of Cd and Cr in the aquatic environment of Malaysia; however, the association between metal ingestion via drinking water and human health risk has not been established. This study collected water samples from four stages of the drinking water supply chain at Langat River Basin, Malaysia in 2015 to analyze the samples by inductivity coupled plasma mass spectrometry. Mean concentrations of Cd and Cr and the time-series river data (2004-2014) of these metals were significantly within the safe limit of drinking water quality standard proposed by the Ministry of Health Malaysia and the World Health Organization. Hazard quotient (HQ) and lifetime cancer risk (LCR) values of Cd and Cr in 2015 and 2020 also indicate no significant human health risk of its ingestion via drinking water. Additionally, management of pollution sources in the Langat Basin from 2004 to 2015 decreased Cr concentration in 2020 on the basis of autoregression moving average. Although Cd and Cr concentrations were found to be within the safe limits at Langat Basin, high concentrations of these metals have been found in household tap water, especially due to the contamination in the water distribution pipeline. Therefore, a two-layer water filtration system should be introduced in the basin to achieve the United Nations Sustainable Development Goals (SDGs) 2030 agenda of a better and more sustainable future for all, especially via SDG 6 of supplying safe drinking water at the household level.
The prolonged persistence of toxic arsenic (As) in environment is due to its non-biodegradable characteristic. Meanwhile, several studies have reported higher concentrations of As in Langat River. However, it is the first study in Langat River Basin, Malaysia, that As concentrations in drinking water supply chain were determined simultaneously to predict the health risks of As ingestion. Water samples collected in 2015 from the four stages of drinking water supply chain were analysed for As concentration by inductively coupled plasma mass spectrometry. Determined As concentrations along with the time series data (2004-2015) were significantly within the maximum limit 0.01 mg/L of drinking water quality standard set by World Health Organization. The predicted As concentration by auto-regression moving average was 3.45E-03 mg/L in 2020 at 95% level based on time series data including climatic control variables. Long-term As ingestion via household filtration water at Langat Basin showed no potential lifetime cancer risk (LCR) 9.7E-06 (t = 6.68; p = 3.37E-08) as well as non-carcinogenic hazard quotient (HQ) 4.8E-02 (t = 6.68; p = 3.37E-08) risk at 95% level. However, the changing landscape, ex-mining ponds and extensive use of pesticides for palm oil plantation at Langat Basin are considered as the major sources of increased As concentration in Langat River. Therefore, a two-layer water filtration system at Langat Basin should be introduced to accelerate the achievement of sustainable development goal of getting safe drinking water supply.
Chemical pollution in the transboundary Langat River in Malaysia is common both from point and non-point sources. Therefore, the water treatment plants (WTPS) at the Langat River Basin have experienced frequent shutdown incidents. However, the Langat River is one of the main sources of drinking water to almost one-third of the population in Selangor state. Meanwhile, several studies have reported a high concentration of Arsenic (As) in the Langat River that is toxic if ingested via drinking water. However, this is a pioneer study that predicts the As concentration in the Langat River based on time-series data from 2005-2014 to estimate the health risk associated with As ingestion via drinking water at the Langat River Basin. Several time-series prediction models were tested and Gradient Boosted Tree (GBT) gained the best result. This GBT model also fits better to predict the As concentration until December 2024. The mean concentration of As in the Langat River for both 2014 and 2024, as well as the carcinogenic and non-carcinogenic health risks of As ingestion via drinking water, were within the drinking water quality standards proposed by the World Health Organization and Ministry of Health Malaysia. However, the ingestion of trace amounts of As over a long period might be detrimental to human health because of its non-biodegradable characteristics. Therefore, it is important to manage the drinking water sources to minimise As exposure risks to human health.
Rivers, the main source of the domestic water supply in Malaysia, have been threatened by frequent flooding in recent years. This study aims to assess human health risks associated with exposure to concentrated heavy metals in a flood-prone region of Malaysia and investigate the affected individuals' willingness to participate in managing water resources. Hazard indices and cancer risks associated with water contamination by heavy metals have been assessed following the method prescribed by the US Environmental Protection Agency. Yearly data of heavy metal contamination (Cd, Cr, Pb, Zn, Fe), water quality parameters (DO, BOD, COD, pH), and climatic information (annual rainfall, annual temperature) have been collected from the Department of Environment and Meteorological Department of Malaysia, respectively. The inductively coupled plasma mass spectrometry technique has been used by the department of environment for analyzing heavy metal concentration in river water samples. In this study, data from a stratified random sample of households in the affected region were analyzed, using partial least squares structural equation modeling, to predict the link between individuals' perceptions and attitudes about water resources and their willingness to engage in water management program. The health risk estimation indicated that the hazard index values were below the acceptable limit, representing no non-carcinogenic risk to adults and children residing in the study area via oral intake and dermal adsorption of water. However, the calculated value for cancer risk signified possible carcinogenic risks associated with Pb and Cd. In general, contamination due to pollution and flooding tends to increase in the basin region, and appropriate management is needed. The results identified perceived water quality as a significant factor influencing people's attitudes toward involvement in water management programs. As in many developing countries, there is no legal provision guaranteeing public representation in water management in Malaysia. The conclusion discusses the importance of these for the literature and for informing future policy actions.
The presence of toxic polonium-210 (Po-210) in the environment is due to the decay of primordial uranium-238. Meanwhile, several studies have reported elevated Po-210 radioactivity in the rivers around the world due to both natural and anthropogenic factors. However, the primary source of Po-210 in Langat River, Malaysia might be the natural weathering of granite rock along with mining, agriculture and industrial activities. Hence, this is the first study to determine the Po-210 activity in the drinking water supply chain in the Langat River Basin to simultaneously predict the human health risks of Po-210 ingestion. Therefore, water samples were collected in 2015⁻2016 from the four stages of the water supply chain to analyze by Alpha Spectrometry. Determined Po-210 activity, along with the influence of environmental parameters such as time-series rainfall, flood incidents and water flow data (2005⁻2015), was well within the maximum limit for drinking water quality standard proposed by the Ministry of Health Malaysia and World Health Organization. Moreover, the annual effective dose of Po-210 ingestion via drinking water supply chain indicates an acceptable carcinogenic risk for the populations in the Langat Basin at 95% confidence level; however, the estimated annual effective dose at the basin is higher than in many countries. Although several studies assume the carcinogenic risk of Po-210 ingestion to humans for a long time even at low activity, however, there is no significant causal study which links Po-210 ingestion via drinking water and cancer risk of the human. Since the conventional coagulation method is unable to remove Po-210 entirely from the treated water, introducing a two-layer water filtration system at the basin can be useful to achieve SDG target 6.1 of achieving safe drinking water supplies well before 2030, which might also be significant for other countries.
The coordination polymers (CPs) of Cu and Zr were synthesized by the hydrothermal method. The orotic acid potassium salt (H3KL) was used as a linker, which coordinates via O-O. Whereas, 4,4'-trimethylenedipyridine (4,4'-TMDP) was used as a bifunctional monomer, which coordinates via N-N. The synthesized CPs were characterized by FTIR, P-XRD, TGA, DSC and SEM. The photocatalytic activity was investigated against methylene blue (MB) under sunlight irradiation. Both Cu-CP and Zr-CP exhibited potential activity for the degradation of MB, which was 72 % for Cu-CP and 93 % for Zr-CP. The band gap of the CPs was also investigated, and the observed value was 2.2 eV. The band gap indicates that these compounds could bring breakthroughs as photocatalysts instead of semiconductors. These kinds of CPs could be used for multiple purposes in industry and in a green environment.
Herein, we have investigated the interaction of bovine serum albumin (BSA), the most abundant globular protein, with a conventional cationic surfactant, cetyldimethylethylammonium bromide (CDMEAB), through a conductivity technique in the absence/presence of electrolyte solutions at various temperatures (298.15-323.15 K). The interaction of the protein with drugs/surfactants and other additives plays a crucial role in the body. Hence, the main concern of the study is to extract the impact of BSA on surfactant molecules and vice versa. From the specific conductivity versus concentration of surfactant plots, three different noticeable critical micelle concentration (c*) values were obtained for pure CDMEAB and its mixture with protein/protein + salts. The presence of BSA and electrolytes altered the c* values of CDMEAB revealing interactions among the studied constituents where the salt solutions reduced the c* values and created a convenient environment for favorable micellization. The negative magnitudes achieved for standard free energy changes (ΔG 0 m) suggest spontaneity of micellization while the values of ΔH 0 m and ΔS 0 m signified the existence of some electrostatic and hydrophobic interactions. The values of molar heat capacity (ΔC 0 m) were positive as well as small which was an indication of less structural deformation. Molecular Dynamics (MD) simulation for all atoms revealed that the salt ions promoted non-covalent interaction between BSA and CDMEAB, and such interactions were not observed in the absence of the salt. Protein structure remained nearly same in spite of strong interaction with CDMEAB as evident from the overall RMSD (root-mean-square deviation) values of the alpha carbons and backbone of the protein and RMSF (root-mean-square fluctuation) values of the amino acid residues present in BSA. In this work thermodynamic parameters of transfer (such as ΔG 0 m.tr., ΔH 0 m.tr., and ΔC 0 p.m.tr.) were also evaluated and the results are discussed in detail. Besides, contributions of enthalpy and entropy to free energy changes were also analyzed.
The reverse transcription-polymerase chain reaction (RT-PCR) test to detect SARS-CoV-2, the virus causing COVID-19, has been regarded as the diagnostic gold standard. However, the excessive sensitivity of RT-PCR may cause false-positive outcomes from contamination. Again, its technical complexity increases the chances of false-negatives due to pre-analytical and analytical errors. This narrative review explores the elements contributing to inaccurate results during the COVID-19 pandemic and offers strategies to minimize these errors. False-positive results may occur due to specimen contamination, non-specific primer binding, residual viral RNA, and false-negatives, which may arise from improper sampling, timing, labeling, storage, low viral loads, mutations, and faulty test kits. Proposed mitigation strategies to enhance the accuracy of RT-PCR testing include comprehensive staff training in specimen collection, optimizing the timing of tests, analyzing multiple gene targets, incorporating clinical findings, workflow automation, and implementing stringent contamination control measures. Identifying and rectifying sources of error in RT-PCR diagnosis through quality control and standardized protocols is imperative for ensuring quality patient care and effective epidemic control.
Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.