Displaying all 2 publications

Abstract:
Sort:
  1. Ahad A, Tahir M, Aman Sheikh M, Ahmed KI, Mughees A, Numani A
    Sensors (Basel), 2020 Jul 21;20(14).
    PMID: 32708139 DOI: 10.3390/s20144047
    Smart health-care is undergoing rapid transformation from the conventional specialist and hospital-focused style to a distributed patient-focused manner. Several technological developments have encouraged this rapid revolution of health-care vertical. Currently, 4G and other communication standards are used in health-care for smart health-care services and applications. These technologies are crucial for the evolution of future smart health-care services. With the growth in the health-care industry, several applications are expected to produce a massive amount of data in different format and size. Such immense and diverse data needs special treatment concerning the end-to-end delay, bandwidth, latency and other attributes. It is difficult for current communication technologies to fulfil the requirements of highly dynamic and time-sensitive health care applications of the future. Therefore, the 5G networks are being designed and developed to tackle the diverse communication needs of health-care applications in Internet of Things (IoT). 5G assisted smart health-care networks are an amalgamation of IoT devices that require improved network performance and enhanced cellular coverage. Current connectivity solutions for IoT face challenges, such as the support for a massive number of devices, standardisation, energy-efficiency, device density, and security. In this paper, we present a comprehensive review of 5G assisted smart health-care solutions in IoT. We present a structure for smart health-care in 5G by categorizing and classifying existing literature. We also present key requirements for successful deployment of smart health-care systems for certain scenarios in 5G. Finally, we discuss several open issues and research challenges in 5G smart health-care solutions in IoT.
  2. Ahmed KI, Tahir M, Lau SL, Habaebi MH, Ahad A, Pires IM
    Data Brief, 2024 Aug;55:110589.
    PMID: 39022696 DOI: 10.1016/j.dib.2024.110589
    The proliferation landscape of the Internet of Things (IoT) has accentuated the critical role of Authentication and Authorization (AA) mechanisms in securing interconnected devices. There is a lack of relevant datasets that can aid in building appropriate machine learning enabled security solutions focusing on authentication and authorization using physical layer characteristics. In this context, our research presents a novel dataset derived from real-world scenarios, utilizing Zigbee Zolertia Z1 nodes to capture physical layer properties in indoor environments. The dataset encompasses crucial parameters such as Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), Device Internal Temperature, Device Battery Level, and more, providing a comprehensive foundation for advancing Machine learning enabled AA in IoT ecosystems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links