Displaying all 13 publications

Abstract:
Sort:
  1. Dahham SS, Al-Rawi SS, Ibrahim AH, Abdul Majid AS, Abdul Majid AMS
    Saudi J Biol Sci, 2018 Dec;25(8):1524-1534.
    PMID: 30591773 DOI: 10.1016/j.sjbs.2016.01.031
    Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p 
  2. Yehya AHS, Asif M, Abdul Majid AMS, Oon CE
    Biomed J, 2021 Dec;44(6):694-708.
    PMID: 35166208 DOI: 10.1016/j.bj.2020.05.015
    BACKGROUND: Pancreatic cancer is one of the most notorious cancers and is known for its highly invasive characteristics, drug resistance, and metastatic progression. Unfortunately, many patients with advanced pancreatic cancer become insensitive towards gemcitabine treatment. Orthosiphon stamineus (O.s) is used widely as a traditional medicine for the treatment of multiple ailments, including cancer in South East Asia. The present in vitro study was designed to investigate the complementary effects of an ethanolic extract of O.s (Et. O.s) or rosmarinic acid in combination with gemcitabine on Panc-1 pancreatic cancer cells.

    METHOD: Cell viability and colony formation assays were used to determine the 50% inhibitory concentration (IC50) of Et. O.s, rosmarinic acid, and gemcitabine. Different doses of gemcitabine in combination with Et. O.s or rosmarinic acid were tested against Panc-1 to select the best concentrations which possessed synergistic effects. Elucidation of molecular mechanisms responsible for mediating chemo-sensitivity in Panc-1 was performed using Quantitative Real-time PCR (QPCR), flow cytometry and immunohistochemistry.

    RESULTS: Et. O.s was found to significantly sensitise Panc-1 towards gemcitabine by reducing the gene expression of multidrug-resistant protein family (MDR) (MDR-1, MRP-4, and MRP-5) and molecules related to epithelial-mesenchymal transition (ZEB-1 and Snail-1). An induction of the human equilibrate nucleoside transporter-1 (hENT-1) gene was also found in cells treated with Et. O.s-gemcitabine. The Et. O.s-gemcitabine combination induced cellular senescence, cell death and cell cycle arrest in Panc-1. In addition, the inhibition of Notch signalling was demonstrated through the downregulation of Notch 1 intracellular domain in this treatment group. In contrast, rosmarinic acid-gemcitabine combination showed no additional effects on cellular senescence, apoptosis, epithelial mesenchymal transition (EMT) markers, the MRP-4 and MRP-5 multi-drug resistance protein family, hENT-1, and the Notch pathway through Notch 1 intracellular domain.

    CONCLUSION: This study provides valuable insights on the use of Et. O.s to complement gemcitabine in targeting pancreatic cancer in vitro, suggesting its potential use as a novel complementary treatment in pancreatic cancer patients.

  3. Yehya AHS, Asif M, Abdul Majid AMS, Oon CE
    J Tradit Complement Med, 2023 Jan;13(1):39-50.
    PMID: 36685076 DOI: 10.1016/j.jtcme.2022.10.002
    BACKGROUND AND AIM: Gemcitabine remains the cornerstone of pancreatic cancer treatment, despite exhibiting a modest effect on patient survival due to the development of drug resistance. Nuvastatic™ polymolecular botanical drug Orthosiphon stamineus (O. stamineus) is a folklore Asian herbal medicine that is used for the treatment of a variety of ailments. However, little is known about the mechanism of actions of the Nuvastatic™ polymolecular botanical drug of O. stamineus as a complementary therapy in resistant pancreatic cancer. It is postulated that the proprietary O. stamineus extract formulation (ID: C5EOSEW5050ESA) in Nuvastatic™ may sensitise resistant pancreatic cancer cells to gemcitabine. This study was conducted to assess the cytotoxic activity and synergistic effects of C5EOSEW5050ESA in gemcitabine-resistant pancreatic cancer cells.

    EXPERIMENTAL PROCEDURE: The effects of C5EOSEW5050ESA treatment on cell viability, multidrug-resistant genes, epithelial-mesenchymal transition, cellular senescence, cell death, and Notch signalling pathway were evaluated in gemcitabine-resistant Panc-1 cells.

    RESULTS AND CONCLUSION: C5EOSEW5050ESA sensitised gemcitabine resistant cells towards C5EOSEW5050ESA-gemcitabine combination treatment by reducing the expression of multidrug-resistant genes and epithelial-mesenchymal transition markers in gemcitabine-resistant cells compared to the control group, possibly through the inhibition of Notch signalling. This study provides valuable insight into using C5EOSEW5050ESA as a potential complementary treatment for resistant pancreatic cancer.

  4. Yehya AHS, Subramaniam AV, Asif M, Kaur G, Abdul Majid AMS, Oon CE
    World J Gastroenterol, 2022 Aug 28;28(32):4620-4634.
    PMID: 36157930 DOI: 10.3748/wjg.v28.i32.4620
    BACKGROUND: Pancreatic cancer is the most aggressive cancer type. Gemcitabine is the first line chemo-drug used for pancreatic cancer but exerts a broad spectrum of organ toxicities and adverse effects in patients.

    AIM: To evaluate the anti-tumour activity and toxicological effects of Orthosiphon stamineus extract formulation (ID: C5EOSEW5050ESA trademarked as Nuva-staticTM), and gemcitabine combination on pancreatic xenograft model.

    METHODS: Mice were randomly divided into six groups of 6 mice each (n = 6) and given different treatments for 28 d. The study design consisted of a 2 x 3 factorial treatment structure, with gemcitabine (yes/no) by oral (at 1200 and 400 mg/kg per day). Human pancreatic cancer cells were injected subcutaneously into the flanks of athymic nude mice. C5EOSEW5050ESA (200 or 400 mg/kg per day) was administered orally, while gemcitabine (10 mg/kg per 3 d) was given intraperitoneally either alone or in combination treatment. Histopathological analyses of vital organs, tumour tissues, and incidence of lethality were analysed. Analyses of tumour necrosis and proliferation were determined by haematoxylin-eosin staining and immunohistochemistry for Ki-67, respectively.

    RESULTS: No signs of toxicity or damage to vital organs were observed in all treatment groups compared to the untreated group. C5EOSEW5050ESA at 200 mg/kg and gemcitabine combination had no additive antitumor effects compared to a single treatment. Remarkably, a comparably greater response in a reduction in tumour growth, Ki-67 protein expression, and necrosis was demonstrated by 400 mg/kg of C5EOSEW5050ESA and gemcitabine combination than that of the individual agents.

    CONCLUSION: These results highlighted the synergistic activity of C5EOSEW5050ESA with gemcitabine to reduce pancreatic tumour growth in mice compared to a single treatment. Thus, this study provides valuable insights into using C5EOSEW5050ESA as a complementary treatment with gemcitabine for pancreatic cancer.

  5. Asif M, Iqbal MA, Hussein MA, Oon CE, Haque RA, Khadeer Ahamed MB, et al.
    Eur J Med Chem, 2016 Jan 27;108:177-187.
    PMID: 26649905 DOI: 10.1016/j.ejmech.2015.11.034
    The current mechanistic study was conducted to explore the effects of increased lipophilicity of binuclear silver(I)-NHC complexes on cytotoxicity. Two new silver(I)-N-Heterocyclic Carbene (NHC) complexes (3 and 4), having lypophilic terminal alkyl chains (Octyl and Decyl), were derived from meta-xylyl linked bis-benzimidazolium salts (1 and 2). Each of the synthesized compounds was characterized by microanalysis and spectroscopic techniques. The complexes were tested for their cytotoxicity against a panel of human cancer c as well normal cell lines using MTT assay. Based on MTT assay results, complex 4 was found to be selectively toxic towards human colorectal carcinoma cell line (HCT 116). Complex 4 was further studied in detail to explore the mechanism of cell death and findings of the study revealed that complex 4 has promising pro-apoptotic and anti-metastatic activities against HCT 116 cells. Furthermore, it showed pronounced cytostatic effects in HCT 116 multicellular spheroid model. Hence, binuclear silver(I)-NHC complexes with longer terminal aliphatic chains have worth to be further studied against human colon cancer for the purpose of drug development.
  6. Taleb Agha M, Baharetha HM, Al-Mansoub MA, Tabana YM, Kaz Abdul Aziz NH, Yam MF, et al.
    Scientifica (Cairo), 2020;2020:7286053.
    PMID: 32509375 DOI: 10.1155/2020/7286053
    In this study, the bioactivity-guided fractionation was conducted on the aerial parts of Arctium lappa L. and then the extracts were tested in vitro on breast cancer (MCF-7), colorectal cancer (HCT-116), and normal cells (EA.hy926). The n-hexane fraction (EHX) of the ethanolic extract showed strong activity against both MCF-7 and EA.hy926 cell lines (IC50 values: 14.08 ± 3.64 and 27.25 ± 3.45 μg/mL, respectively). The proapoptotic activity of EHX was assessed using MCF-7. Morphological alterations were visualized using Hoechst staining and a transmission electron microscope. Cancer cell signal transduction pathways were investigated, and EHX significantly upregulated p53, TGF-β, and NF-κB. Furthermore, EHX was found to disrupt the metastatic cascade of breast cancer cells by the inhibition of cell proliferation, migration, invasion, and colonization. The antiangiogenic activity of EHX fraction showed potent inhibition of rat aorta microvessels with IC50 value: 4.34 ± 1.64 μg/mL. This result was supported by the downregulation of VEGF-A expression up to 54%. Over 20 compounds were identified in EHX using GC-MS, of which stigmasterol, ß-sitosterol, and 3-O-acetyllupeol are the major active compounds. Phytochemical analysis of EHX showed higher phenolic and flavonoid contents with a substantial antioxidant activity. In conclusion, this work demonstrated that A. lappa has valuable anticancer activity and antiangiogenic properties that might be useful in breast cancer therapy.
  7. Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, et al.
    Chin J Nat Med, 2017 Jul;15(7):505-514.
    PMID: 28807224 DOI: 10.1016/S1875-5364(17)30076-6
    Considering the great potential of natural products as anticancer agents, the present study was designed to explore the molecular mechanisms responsible for anticancer activities of Mesua ferrea stem bark extract against human colorectal carcinoma. Based on MTT assay results, bioactive sub-fraction (SF-3) was selected for further studies using HCT 116 cells. Repeated column chromatography resulted in isolation of less active α-amyrin from SF-3, which was identified and characterized by GC-MS and HPLC methods. α-amyrin and betulinic acid contents of SF-3 were measured by HPLC methods. Fluorescent assays revealed characteristic apoptotic features, including cell shrinkage, nuclear condensation, and marked decrease in mitochondrial membrane potential in SF-3 treated cells. In addition, increased levels of caspases-9 and -3/7 levels were also observed in SF-3 treated cells. SF-3 showed promising antimetastatic properties in multiple in vitro assays. Multi-pathway analysis revealed significant down-regulation of WNT, HIF-1α, and EGFR with simultaneous up-regulation of p53, Myc/Max, and TGF-β signalling pathways in SF-3 treated cells. In addition, promising growth inhibitory effects were observed in SF-3 treated HCT 116 tumour spheroids, which give a hint about in vivo antitumor efficacy of SF-3 phytoconstituents. In conclusion, these results demonstrated that anticancer effects of SF-3 towards colon cancer are through modulation of multiple molecular pathways.
  8. Kithur Mohamed S, Asif M, Nazari MV, Baharetha HM, Mahmood S, Yatim ARM, et al.
    Indian J Pharmacol, 2019 4 30;51(1):45-54.
    PMID: 31031467 DOI: 10.4103/ijp.IJP_312_18
    OBJECTIVES: Sophorolipids (SLs) are a group of surface-active glycolipids produced by a type of nonpathogenic yeast Candida bombicola in the presence of vegetable oil through fermentation technology. SLs have shown antitumor activity; however, the mechanism of action underlying the anticancer activity of SLs is poorly understood. This work evaluated the anticancer activity of SLs fermented from palm oil by exploring its antiangiogenic activity.

    MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied.

    RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic.

    CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.

  9. Yehya AHS, Asif M, Kaur G, Hassan LEA, Al-Suede FSR, Abdul Majid AMS, et al.
    J Adv Res, 2019 Jan;15:59-68.
    PMID: 30581613 DOI: 10.1016/j.jare.2018.05.006
    Pancreatic cancer has the highest mortality rate among cancers due to its aggressive biology and lack of effective treatment. Gemcitabine, the first line anticancer drug has reduced efficacy due to acquired resistance. The current study evaluates the toxicological effects of Orthosiphon stamineus (O.s) and its marker compound (rosmarinic acid) in combination with gemcitabine. O.s (200 or 400 mg/kg/day) and rosmarinic acid (32 mg/kg/day) were administered orally and gemcitabine (10 mg/kg/3 days) intraperitoneally either alone or in combination treatment for fourteen days. Parameters including blood serum biochemistry, hematology, myeloid-erythroid ratio, incident of lethality, and histopathological analysis of liver, kidney, and spleen tissues were studied. Neither, individual drugs/extract nor chemo-herbal combinations at tested doses induced any toxicity and damage to organs in nude mice when compared to control group. Toxicological data obtained from this study will help to select the best doses of chemo-herbal combination for future pancreatic xenograft tumor studies.
  10. Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, et al.
    Biomed Pharmacother, 2019 Jan;109:1620-1629.
    PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127
    Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
  11. Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, et al.
    Drug Chem Toxicol, 2018 Jan;41(1):82-88.
    PMID: 28635332 DOI: 10.1080/01480545.2017.1317785
    Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
  12. Al-Dulaimi DW, Shah Abdul Majid A, M Baharetha H, Ahamed MBK, Faisal SF, Al Zarzour RH, et al.
    Drug Chem Toxicol, 2020 Apr 22.
    PMID: 32321321 DOI: 10.1080/01480545.2020.1749652
    Orthosiphon stamineus (O.S) is widely consumed for its medidcinal value including anti-inflammatory, anti-infective, and diuretic properties. The present study evaluates the cytoprotective, anti-mutagenic, and anticlastogenic efficacies of standardized extract of Orthosiphon stamineus. Normal liver cell line (WRL68) exposed to hydrogen peroxide and serum-deprived media as insults to evaluate cytoprotective and glutathione activation activities of (Et. O. s). Salmonella typhimurium TA98 and TA100 exposed to different concentrations of (Et. O. s). The influence of Et. O. s on mitotic, replicative indices as well as chromosomal aberration (CA) and sister chromatid exchange (SCE) induced in human peripheral blood lymphocytes by mitomycin C (MMC). The Et. O.s proved to be a potent scavenger for hydrogen peroxide and other free radicals in serum-depraved media, which showed to stimulate glutathione production in liver cells line. Moreover, it did not induce mutations in S. typhimurium subspecies TA98 and TA100. The standardized extract exhibited powerful antimutagenic activities as verified against both 2-nitrofluorene and sodium azide in S. typhimurium TA98 and TA100 cells, respectively. Cytogenetic tests showed high concentrations of Et. O. s to reduce the values of mitotic and replicative indices without any accompanying side effects, such as chromosomal abnormalities or SCE. To ameliorate MMC effects, pretreatment with the extract proofed to be efficient protocol. These data suggests that O. stamineus extract could be useful as cytoprotective, antimutagenic, and anticlastogenic efficacies, which owes to its potent chemoprevention, antioxidant, and glutathione activation properties.
  13. Alarabei AA, Abd Aziz NAL, Ab Razak NI, Abas R, Bahari H, Abdullah MA, et al.
    Adv Pharm Bull, 2024 Mar;14(1):105-119.
    PMID: 38585461 DOI: 10.34172/apb.2024.001
    Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links