Displaying all 4 publications

Abstract:
Sort:
  1. Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA
    Dis Markers, 2021;2021:7675269.
    PMID: 34326906 DOI: 10.1155/2021/7675269
    Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
  2. Mohamed Yusoff AA, Mohd Khair SZN, Wan Abdullah WS, Abd Radzak SM, Abdullah JM
    J Cancer Res Ther, 2020 12 22;16(6):1517-1521.
    PMID: 33342822 DOI: 10.4103/jcrt.JCRT_1132_16
    Background and Objective: Meningiomas are among the most common intracranial tumors of the central nervous system. It is widely accepted that the initiation and progression of meningiomas involve the accumulation of nucleus genetic alterations, but little is known about the implication of mitochondrial genomic alterations during development of these tumors. The human mitochondrial DNA (mtDNA) contains a short hypervariable, noncoding displacement loop control region known as the D-Loop. Alterations in the mtDNA D-loop have been reported to occur in most types of human cancers. The purpose of this study was to assess the mtDNA D-loop mutations in Malaysian meningioma patients.

    Materials and Methods: Genomic DNA was extracted from 21 fresh-frozen tumor tissues and blood samples of the same meningioma patients. The entire mtDNA D-loop region (positions 16024-576) was polymerase chain reaction amplified using designed primers, and then amplification products were purified before the direct DNA sequencing proceeds.

    Results: Overall, 10 (47.6%) patients were detected to harbor a total of 27 somatic mtDNA D-loop mutations. Most of these mtDNA mutations were identified in the hypervariable segment II (40.7%), with 33.3% being located mainly in the conserved sequence block II of the D310 sequence. Furthermore, 58 different germline variations were observed at 21 nucleotide positions.

    Conclusion: Our results suggest that mtDNA alterations in the D-loop region may be an important and early event in developing meningioma. Further studies are needed, including validation in a larger patient cohort, to verify the clinicopathological outcomes of mtDNA mutation biomarkers in meningiomas.

  3. Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z, Lee HC
    J Chin Med Assoc, 2020 Sep;83(9):838-844.
    PMID: 32732530 DOI: 10.1097/JCMA.0000000000000401
    BACKGROUND: The 4977-bp common deletion (mtDNA) is a well-established mitochondrial genome alteration that has been described in various types of human cancers. However, to date, no studies on mtDNA in brain tumors have been reported. The present study aimed to determine mtDNA prevalence in common brain tumors, specifically, low- and high-grade gliomas (LGGs and HGGs), and meningiomas in Malaysian cases. Its correlation with clinicopathological parameters was also evaluated.

    METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.

    RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.

    CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.

  4. Mohamed Yusoff AA, Abd Radzak SM, Mohd Khair SZN, Abdullah JM
    Exp Oncol, 2021 06;43(2):159-167.
    PMID: 34190524
    BACKGROUND: To date, BRAF mutations in brain tumor patients have not been characterized in the Malaysian population. Based on the numerous reported studies, there are main mutations that exist in BRAF gene in various types of cancers. A missense mutation in codon 600 of the BRAF nuclear oncogene (BRAFV600E) is the most prevalent hotspot point mutation that has been identified in multiple human malignancies.

    AIM: We here aimed to find out the frequency of BRAFV600E mutation in a series of Malaysian patients with brain tumors and if any association exists between BRAFV600E mutation and clinicopathological features of patients.

    MATERIAL AND METHODS: Fresh frozen tumor tissue samples from 50 Malaysian brain tumor patients were analyzed for BRAFV600E mutational status, and its correlation with clinicopathological features (including age, gender, and tumor localization such as intra-axial: within the brain substance or extra-axial: outside the brain substance) was examined.

    RESULTS: The overall BRAFV600E mutation frequency was determined to be 22% (in 11 of 50 patients). BRAFV600E was significantly correlated with the tumor location group, which shows BRAFV600E was more frequent in the intra-axial tumor than the extra-axial tumor group. In this study, we also observed that male patients were slightly more susceptible to BRAFV600E mutation, and this mutation was predominant in patients of the age group 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links