Microinjection is a powerful tool to deliver various substances, such as nucleic acids, proteins, peptides, RNA, and synthetic molecules into mammalian cells mechanically. Through microinjection, a controlled amount of protein can be delivered into the target cells to elucidate the specific functional
effects in vitro. In this study, a series of protein microinjection optimization was performed in human breast cancer cells. The presence of Maltose Binding Protein (MBP) was microscopically monitored through indirect immunofluorescence assay. The optimization experimentation gave a high success rate when MBP protein was used at the minimum concentration of 1.5 mg/ml and at the injection pressures of 50 and 70 hPa. The average success rate of injections was 49.2±4.15% and 50.8±4.6%, while the average cell survivability was 50.98±4.67% and 49.72±5.48% at 50 and 70 hPa, respectively. The optimization of the MBP concentration and injection pressures successfully allowed an efficient delivery of precise protein dosage into breast cancer cells without any adverse effect. This microinjection optimization can be a practical guideline in any downstream applications of protein functional work.
Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media.
PCR has been extensively used for amplification of DNA sequences. We conducted a study to obtain the best amplification conditions for cytochrome b (Cyt b), cytochrome c oxidase I (COI) and 12S rRNA (12S) gene fragments of Malayan gaur mtDNA. DNA from seven Malayan gaur samples were extracted for PCR amplification. Various trials and combinations were tested to determine the best conditions of PCR mixture and profile to obtain the best PCR products for sequencing purposes. Four selected target factors for enhancing PCR, annealing temperature, concentration of primer pairs, amount of Taq polymerase, and PCR cycle duration, were optimized by keeping the amount of DNA template (50 ng/μL) and concentration of PCR buffer (1X), MgCl(2) (2.5 mM) and dNTP mixture (200 μM each) constant. All genes were successfully amplified, giving the correct fragment lengths, as assigned for both forward and reverse primers. The optimal conditions were determined to be: 0.1 μM primers for Cyt b and COI, 0.3 μM primers for 12S, 1 U Taq polymerase for all genes, 30 s of both denaturation and annealing cycles for Cyt b, 1 min of both stages for 12S and COI and annealing temperature of 58.4 ° C for Cyt b, 56.1 ° C for 12S and 51.3 ° C for COI. PCR products obtained under these conditions produced excellent DNA sequences.
The Malayan gaur (Bos gaurus hubbacki) is one of the three subspecies of gaurs that can be found in Malaysia. We examined the phylogenetic relationships of this subspecies with other species of the genus Bos (B. javanicus, B. indicus, B. taurus, and B. grunniens). The sequence of a key gene, cytochrome b, was compared among 20 Bos species and the bongo antelope, used as an outgroup. Phylogenetic reconstruction was employed using neighbor joining and maximum parsimony in PAUP and Bayesian inference in MrBayes 3.1. All tree topologies indicated that the Malayan gaur is in its own monophyletic clade, distinct from other species of the genus Bos. We also found significant branching differences in the tree topologies between wild and domestic cattle.
Mitochondrial DNA (mtDNA) is a useful genetic marker that can be used for species identification. The cytochrome b (Cyt b) gene is a suitable mtDNA candidate gene for use in phylogenetic analyses due to its sequence variability, which makes it appropriate for comparisons at the subspecies, species, and genus levels. This study was conducted to develop a rapid molecular method for species identification of Malayan gaur (Bos gaurus hubbacki), Kedah-Kelantan (KK) (Bos indicus), and Bali (Bos javanicus) cattle in Malaysia. DNA was extracted from blood samples of 8 Malayan gaurs, 30 KK, and 28 Bali cattle. A set of both specific and universal primers for the Cyt b gene were used in PCR amplification. DNA sequences obtained were then analyzed using BioEdit and Restriction Mapper softwares. The PCR products obtained from Cyt b gene amplification were then subjected to restriction enzyme digestion. The amplification, using both specific and universal primers, produced a 154- and a 603-bp fragment, respectively, in all three species. Two restriction enzymes, NlaIV and SspI, were used to obtain specific restriction profiles that allowed direct identification of Malayan gaur, KK, and Bali cattle. Our findings indicate that all three species can be identified separately using a combination of universal primers and the restriction enzyme SspI.
Bali cattle is a domestic cattle breed that can be found in Malaysia. It is a domestic cattle that was purely derived from a domestication event in Banteng (Bos javanicus) around 3,500 BC in Indonesia. This research was conducted to portray the phylogenetic relationships of the Bali cattle with other cattle species in Malaysia based on maternal and paternal lineage. We analyzed the cytochrome c oxidase I (COI) mitochondrial gene and SRY of Y chromosome obtained from five species of the Bos genus (B. javanicus, Bos gaurus, Bos indicus, Bos taurus, and Bos grunniens). The water buffalo (Bubalus bubalis) was used as an outgroup. The phylogenetic relationships were observed by employing several algorithms: Neighbor-Joining (PAUP version 4.0), Maximum parsimony (PAUP version 4.0) and Bayesian inference (MrBayes 3.1). Results from the maternal data showed that the Bali cattle formed a monophyletic clade, and together with the B. gaurus clade formed a wild cattle clade. Results were supported by high bootstrap and posterior probability values together with genetic distance data. For the paternal lineage, the sequence variation is low (with parsimony informative characters: 2/660) resulting an unresolved Neighbor-Joining tree. However, Bali cattle and other domestic cattle appear in two monophyletic clades distinct from yak, gaur and selembu. This study expresses the potential of the COI gene in portraying the phylogenetic relationships between several Bos species which is important for conservation efforts especially in decision making since cattle is highly bred and hybrid breeds are often formed. Genetic conservation for this high quality beef cattle breed is important by maintaining its genetic characters to prevent extinction or even decreased the genetic quality.