Displaying all 7 publications

Abstract:
Sort:
  1. Dahlui M, Hishamshah MI, Rahman AJ, Aljunid SM
    Singapore Med J, 2009 Aug;50(8):794-9.
    PMID: 19710979
    The quality of life of transfusion-dependent thalassaemia patients is affected by the disease itself and iron overload complications from repeated blood transfusion. Desferrioxamine has been used to remove the excess iron, resulting in decreased mortality and morbidity. In Malaysia, a significant proportion of the transfusion-dependent thalassaemia patients are not prescribed desferrioxamine, due to its high cost, especially as it is not subsidized by the government. The aim of this study was to measure the quality of life of thalassaemia patients on desferrioxamine treatment.
  2. Ranjith MS, Ranjitsingh AJ, Shankar SG, Vijayalaksmi GS, Deepa K, Babu K, et al.
    Pharmacognosy Res, 2010 Jan;2(1):10-4.
    PMID: 21808531 DOI: 10.4103/0974-8490.60581
    Solanum trilobatum is a widely used plant in the Indian indigenous systems of medicine. It is mainly used in the treatment of respiratory diseases like bronchial asthma. In our present study, we report that the aqueous and alcoholic extracts of S. trilobatum exhibited inhibition of mast cell degranulation. Further, aqueous and alcoholic extracts of S. trilobatum significantly decreased the release of IL1α and increased the release of IL8 from the cultured keratinocytes. Oral administration of the aqueous and alcoholic extracts of S. trilobatum stabilized mast cells in experimental rats.
  3. Kumar SS, Alarfaj AA, Munusamy MA, Singh AJ, Peng IC, Priya SP, et al.
    Int J Mol Sci, 2014;15(12):23418-47.
    PMID: 25526563 DOI: 10.3390/ijms151223418
    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
  4. Arfuzir NN, Lambuk L, Jafri AJ, Agarwal R, Iezhitsa I, Sidek S, et al.
    Neuroscience, 2016 06 14;325:153-64.
    PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041
    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
  5. Mudhafar M, Zainol I, A J A, Abd MY, Alsailawi HA, Ghazaly NM, et al.
    Heliyon, 2024 Jun 30;10(12):e32837.
    PMID: 39022059 DOI: 10.1016/j.heliyon.2024.e32837
    This work aimed to produce silver nanoparticles (AgNPs) by efficient green synthesis techniques, namely rapid green synthesis and modified microwave-assisted green synthesis methods. The study used fish scale collagen (FsCol) as a stabilizer to assess its impact on the dimensions and configurations of AgNPs. Four samples were prepared with varying concentrations of FsCol. The synthesized AgNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), Dynamic Light Scattering (DLS), and Transmission electron microscopy (TEM) techniques. The obtained sizes are as follows: 85 ± 15 nm, 70 ± 10 nm, 50 ± 10 nm, and 28-40 nm. The UV-vis spectroscopy revealed a shift in the absorbance peaks from 400 to 446 nm. The SEM method showed a spherical form in all of the samples. The element silver was detected in the EDX examination, along with the presence of oxygen (O) and carbon (C). The FTIR analysis revealed that the peaks seen at 3307 cm-1 were attributed to the stretching of O-H bonds, while the mountain at 1638 cm-1 belonged to the extension of N-H bonds (amide A). Additionally, the band observed at 1638 cm-1 indicated the presence of CO bonds (amide I).The 2140 cm-1 and 1302 cm-1 peaks may be attributed to the C2H2 group present in the plant components and the N-H bending (Amide III), respectively. The XRD pattern indicates that the synthesis process resulted in the formation of crystalline AgNPs. The particle sizes measured using DLS were 121 nm, 96.36 nm, 82.3 nm, and 48.50 nm. The TEM approach revealed that all samples had a spherical morphology with varying sizes: 80-100 nm, 50-80 nm, 40-60 nm, and 28-42 nm. The synthesized AgNPs were tested for their antibacterial properties against the pathogenic pathogens Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus). The influence of AgNPs on bacteria was amplified as the particle size decreased, resulting in a larger inhibitory zone for the smaller particles.
  6. Mangano MC, Berlino M, Corbari L, Milisenda G, Lucchese M, Terzo S, et al.
    Environ Sci Policy, 2022 Jan;127:98-110.
    PMID: 34720746 DOI: 10.1016/j.envsci.2021.10.014
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links