METHODS: The interaction between HIFU waves and dentin-surface in terms of structural, mechanical and chemical variations were investigated by SEM, TEM, AFM, nano-indentation and Raman-analysis. The bonding between HIFU-treated dentin and two-step, etch-and-rinse, adhesive was preliminary explored by characterizing dentin-bound proteases activities, resin-dentin interfacial morphology and bond-durability with HIFU exposure at different time-points of 60, 90 and 120 s compared to conventional acid-etching technique.
RESULTS: With the increase in HIFU exposure-time from 60-to-120 s, HIFU waves were able to remove the smear-layer, expose dentinal-tubules and creating textured/rough dentin surface. In addition, dentin surfaces showed a pattern of interlocking ribbon-like minerals-coated collagen-fibrils protruding from the underlaying amorphous dentin-background with HIFU exposure for 90 s and 120 s. This characteristic pattern of dentin-surface showing inorganic-minerals associated/aligned with collagen-fibrils, with 90-to-120 s HIFU-treatment, was confirmed by the Raman-analysis. HIFU-treated specimens showed higher nano-indentation properties and lower concentrations of active MMP-2 and Cathepsin-K compared to the acid-etched specimens. The resin-dentin bonded interface revealed the partial/complete absence of the characteristic hybrid-layer formed with conventional etch-and-rinse bonding strategy. Additionally, resin-infiltration and resin-tags formation were enhanced with the increase in HIFU exposure-time to 120 s. Although, all groups showed significant decrease in bond-strength after 12 months compared to 24 h storage in artificial saliva, groups exposed to HIFU for 90 s and 120 s showed significantly higher μTBS compared to the control acid-etched group.
SIGNIFICANCE: The implementation of HIFU-technology for dental hard-tissues treatment could be of potential significance in adhesive/restorative dentistry owing to its ability of controlled, selective and localised combined tissue alteration/ablation effects.
PURPOSE: The purpose of this in vitro study was to evaluate the SR, tensile strength (TS), and percentage elongation (% E) of different SEs subjected to outdoor weathering in the Malaysian climate.
MATERIAL AND METHODS: Type-II dumbbell-shaped specimens (N-120) (nonweathered=15, weathered=15) were made from 3 room-temperature vulcanized (A-2000, A-2006, and A-103) and 1 heat-temperature vulcanized (M-511) silicone (Factor II). For 6 months, weathered specimens were subjected to outdoor weathering inside a custom exposure rack. Simultaneously, the nonweathered specimens were kept in a dehumidifier. Subsequently, the SR was measured with a profilometer; TS and % E were measured by using a universal testing machine. Two-way ANOVA was used to compare the means of the tested properties of the nonweathered and weathered specimens, and pairwise comparison was carried out between the silicones (α=.05).
RESULTS: After outdoor weathering, the SR, TS, and % E were adversely affected by weathering in the Malaysian environment. Among the silicone materials, A-2000 showed the least TS changes (2.51 MPa), while A-2006 demonstrated significant changes in percentage elongation after outdoor weathering (266.5%). M-511 exhibited the highest mean value (2.50 μm) for SR changes. In addition, A-103 SE showed statistically significant differences in most pairwise comparisons for all 3 dependent variables.
CONCLUSIONS: Based on the evaluation of mechanical properties, A-103 can be suggested as a suitable silicone for maxillofacial prostheses fabricated for tropical climates. However, A-2000 can be a suitable alternative, although significant changes to surface roughness were detected after outdoor weathering.
METHODS: Dentin slabs were treated with 0.1% riboflavin-5-phosphate modified (powder added slowly while shaking and then sonicated to enhance the dispersion process) Universal Adhesive Scotch Bond and Zipbond™ along with control (non-modified) and experimental adhesives, photoactivated with blue light for 20s. Hydroxyproline (HYP) release was assessed after 1-week storage. Elastic-modulus testing was evaluated using universal testing machine at 24 h. Resin-dentin interfacial morphology was assessed with scanning electron-microscope, after 6-month storage. 0.1% rhodamine dye was added into each adhesive and analyzed using CLSM. Detection of free amino groups was carried out using ninhydrin and considered directly proportional to optical absorbance. Collagen molecular confirmation was determined using spectropolarimeter to evaluate and assess CD spectra. For molecular docking studies with riboflavin (PDB ID file), the binding pocket was selected with larger SiteScore and DScore using Schrodinger PB software. After curing, Raman shifts in Amide regions were obtained at 8 μm levels. Data were analyzed using Two-way analysis of variance (ANOVA, p ≤ 0.05) and Tukey-Kramer multiple comparison post hoc tests.
RESULTS: At baseline, bond strength reduced significantly (p ≤ 0.05) in control specimens. However, at 6 months' storage, UVA Zipbond™ had significantly higher μTBS. Resin was able to diffuse through the porous demineralized dentin creating adequate hybrid layers in both 0.1%RF modified adhesives in CLSM images. In riboflavin groups, hybrid layer and resin tags were more pronounced. The circular dichroism spectrum showed negative peaks for riboflavin adhesive specimens. Best fitted poses adopted by riboflavin compound are docked with MMP-2 and -9 proteases. Amide bands and CH2 peaks followed the trend of being lowest for control UA Scotch bond adhesive specimens and increasing in Amides, proline, and CH2 intensities in 0.1%RF modified adhesive specimens. All 0.1%RF application groups showed statistically significant (p strength of universal adhesive to dentin.