Displaying publications 161 - 180 of 1357 in total

Abstract:
Sort:
  1. Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, et al.
    ACS Biomater Sci Eng, 2022 Oct 10;8(10):4196-4206.
    PMID: 34464089 DOI: 10.1021/acsbiomaterials.1c00807
    Pretomanid and MCC7433, a novel nitroimidazopyrazinone analog, are promising antitubercular agents that belong to the bicyclic nitroimidazole family. Despite possessing high cell permeability, they suffer from poor aqueous solubility and require specialized formulations in order to be orally bioavailable. To address this limitation, we investigated the use of mesoporous silica nanoparticles (MCM-41) as drug carriers. MCM-41 nanoparticles were synthesized using a sol-gel method, and their surface was further modified with amine and phosphonate groups. A simple rotary evaporation method was used to incorporate the compounds of interest into the nanoparticles, leading to a high encapsulation efficiency of ≥86% with ∼10% loading (w/w). An overall significant improvement of solubility was also observed, and the pharmacological activity of pretomanid and MCC7433 was fully retained when tested in vitro against Mycobacterium tuberculosis using these nanocarriers. Amino-functionalized MCM-41 nanoparticles were found to enhance the systemic exposure of MCC7433 in mice (1.3-fold higher Cmax) compared to MCC7433 alone. The current work highlights the potential of using nanoparticles such as mesoporous silica as a carrier for oral delivery of poorly soluble antibacterial agents against tuberculosis.
    Matched MeSH terms: Nanoparticles*
  2. Khan RU, Khan M, Sohail A, Ullah R, Iqbal A, Ahmad B, et al.
    Trop Biomed, 2022 Dec 01;39(4):511-517.
    PMID: 36602209 DOI: 10.47665/tb.39.4.003
    The present study compares the in vitro effects of nanoparticles loaded pentamidine drug and conventional pentamidine on Leishmania tropica. Herein, pentamidine-loaded chitosan nanoparticles (PTN-CNPs) have been synthesized through an ionic gelation method with sodium tripolyphosphate (TPP). Next, the physical characteristics of PTN-CNPs were determined through the surface texture, zeta potential, in vitro drug release, drug loading content (DLC), and encapsulation efficacy (EE) and compared its efficacy with free pentamidine (PTN) drug against promastigotes and axenic amastigotes forms of L. tropica in vitro. The PTN-CNPs displayed a spherical shape having a size of 88 nm, an almost negative surface charge (-3.09 mV), EE for PTN entrapment of 86%, and in vitro drug release of 92% after 36 h. In vitro antileishmanial activity of PTN-CNPs and free PTN was performed against Leishmania tropica KWH23 promastigote and axenic amastigote using 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyletetrazolium bromide (MTT) assay. It was observed that the effect of PTN-CNPs and free PTN on both forms of the parasite was dose and time dependent. Free PTN presented low efficacy even at higher dose (40 µg/ml) with 25.6 ± 1.3 and 26.5 ±1.4 mean viability rate of the promastigotes and axenic amastigotes, respectively after 72 hrs incubation. While PTN-CNPs showed strong antileishmanial effects on both forms of parasite with 16 ± 0.4 and 19 ± 0.7 mean viability rate at the same higher concentration (40 µg/ml) after 72 hrs incubation. Half maximal inhibitory concentration (IC50) values of PTN-CNPs toward promastigotes and amastigotes were obtained as 0.1375 µg/ml and 0.1910 µg/ml, respectively. In conclusion, PTN-CNPs effectively inhibited both forms of the L. tropica; however, its effect was more salient on promastigotes. This data indicates that the PTN-CNPs act as a target drug delivery system. However, further research is needed to support its efficacy in animal and human CL.
    Matched MeSH terms: Nanoparticles*
  3. Isa N, Osman MS, Abdul Hamid H, Inderan V, Lockman Z
    Int J Phytoremediation, 2023;25(5):658-669.
    PMID: 35858487 DOI: 10.1080/15226514.2022.2099345
    This study describes the synthesis of silver nanoparticles (AgNPs) using shortleaf spikesedge extract (SSE) to reduce AgNO3. Visual observation, in addition to analyses of UV-vis, EDX, XRD, FTIR, and TEM was employed to monitor the formation of AgNPs. The effects of SSE concentration, AgNO3 concentration, reaction time, pH, and temperature on the synthesis of AgNPs were studied based on the surface plasmon resonance (SPR) band. From the TEM image, highly-scattered AgNPs of quasi-spherical shape with an average particle size of 17.64 nm, were observed. For the catalytic study, the reduction of methylene blue (MB) was evaluated using two systems. A detailed batch study of the removal efficiency (%RE) and kinetics was done at an ambient temperature, various MB initial concentrations, and varying reaction time. Employing the electron relay effect in System 2, the batch study clearly highlighted the significant role of AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. The kinetic data best fitted the pseudo-first-order model with a maximum reaction rate of 2.5715 min-1. These findings suggest the promising application of AgNPs in dye wastewater treatment.The SSE-driven AgNPs were prepared using unwanted dried biomass of shortleaf spikesedge extract (SSE) as a reducing as well as stabilizing agent. Employing the electron relay effect, the batch study clearly highlighted the significant role of SSE-driven AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. In this sense, SSE-driven AgNPs acted as an electron relay point that behaves alternatively as acceptor and donor of electrons. The findings revealed the good catalytic performance of SSE-driven AgNPS, proving their viability for dye wastewater treatment.
    Matched MeSH terms: Metal Nanoparticles*
  4. Kanathasan JS, Palanisamy UD, Radhakrishnan AK, Chakravarthi S, Thong TB, Swamy V
    Nanomedicine (Lond), 2022 Sep;17(21):1511-1528.
    PMID: 36382634 DOI: 10.2217/nnm-2022-0017
    Background: Porous silicon (pSi) nanoparticles (NPs) functionalized with suitable targeting ligands are now established cancer bioimaging agents and drug-delivery platforms. With growing interest in peptides as tumor-targeting ligands, much work has focused on the use of various peptides in combination with pSi NPs for cancer theranostics. Here, the authors investigated the targeting potential of pSi NPs functionalized with two types of peptide, a linear 10-mer peptide and its branched (Y-shaped) equivalent, that respond to legumain activity in tumor cells. Results: In vitro experiments established that the linear peptide-pSi NP conjugate had better aqueous stability under tumor conditions and higher binding efficiency (p  0.05) of linear peptide-conjugated pSi NPs in the tumor site within 4 h compared with nonconjugated pSi NPs. These results suggest that the linear peptide-pSi NP formulation is a nontoxic, stable and efficient fluorescence bioimaging agent and potential drug-delivery platform.
    Matched MeSH terms: Nanoparticles*
  5. Masanam HB, Perumal G, Krishnan S, Singh SK, Jha NK, Chellappan DK, et al.
    Nanomedicine (Lond), 2022 Oct;17(25):1981-2005.
    PMID: 36695290 DOI: 10.2217/nnm-2021-0427
    The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.
    Matched MeSH terms: Nanoparticles*
  6. Hena S, Rozi R, Tabassum S, Huda A
    Environ Sci Pollut Res Int, 2016 Aug;23(15):14868-80.
    PMID: 27072032 DOI: 10.1007/s11356-016-6540-5
    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  7. Chan YY, Pang YL, Lim S, Lai CW, Abdullah AZ, Chong WC
    Environ Sci Pollut Res Int, 2020 Oct;27(28):34675-34691.
    PMID: 31628641 DOI: 10.1007/s11356-019-06583-z
    Nowadays, the current synthesis techniques used in industrial production of nanoparticles have been generally regarded as nonenvironmentally friendly. Consequently, the biosynthesis approach has been proposed as an alternative to reduce the usage of hazardous chemical compounds and harsh reaction conditions in the production of nanoparticles. In this work, pure, iron (Fe)-doped and silver (Ag)-doped zinc oxide (ZnO) nanoparticles were successfully synthesized through the green route using Clitoria ternatea Linn. The optical, chemical, and physical properties of the biosynthesized ZnO nanoparticles were then analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis diffuse reflectance spectroscopy (DRS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and surface analysis. The biosynthesized ZnO nanoparticles were crystallized with a hexagonal wurtzite structure and possessed smaller particle sizes than those of commercially or chemically produced samples. The existence of biomolecules to act as reducing and stabilizing agents from C. ternatea Linn aqueous extract was confirmed using FTIR analysis. The biosynthesized ZnO nanoparticles mainly comprised of negatively charged groups and responsible for moderately stable dispersion of the nanoparticles. All these properties were favorable for the sonocatalytic degradation of Congo red. Sonocatalytic activity of ZnO nanoparticles was studied through the degradation of 10 mg/L Congo red using ultrasonic irradiation at 45 kHz and 80 W. The results showed that the sonocatalytic degradation efficiency of Congo red in the presence of biosynthesized ZnO nanoparticles prepared at 50 °C for 1 h could achieve 88.76% after 1 h. The sonocatalytic degradation efficiency of Congo red in the presence of Ag-doped ZnO was accelerated to 94.42% after 10 min which might be related to the smallest band gap energy (3.02 eV) and the highest specific surface area (10.31 m2/g) as well as pore volume (0.0781 cm3/g). Lastly, the biosynthesized ZnO nanoparticles especially Ag-doped ZnO offered significant antibacterial potential against Escherichia coli which indicated its ability to inhibit the normal growth and replication of bacterial cells. These results affirmed that the biosynthesized ZnO nanoparticles could be used as an alternative to the current chemical compounds and showed a superior sonocatalytic activity toward degradation of Congo red.
    Matched MeSH terms: Nanoparticles*
  8. Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16779-16796.
    PMID: 35084685 DOI: 10.1007/s11356-022-18515-5
    Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
    Matched MeSH terms: Nanoparticles*
  9. Sivaranjani SK, Durairaj K, Jayalakshmi G, Sumathi J, Balasubramanian B, Chelliapan S, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116692.
    PMID: 37500033 DOI: 10.1016/j.envres.2023.116692
    Semiconductor metal oxide with TiO2 nanoparticles removes hazardous compounds from environmental samples. TiO2 nanoparticles have shown potential as an efficient photocatalyst by being employed as a nano-catalyst for the breakdown of organic contaminants in wastewater samples. To separate substances from contaminated samples, combined UV and visible light irradiation has been used. Sol-gel synthesis was used to produce a copper chromite-titanium nanocomposite, which was then evaluated using analytical methods, such as XRD, BET, DRS-UV, and FT-IR. Using visible light, the photocatalytic activity of a nanocomposite made of CuCr2O4 and TiO2 was investigated for its role in the breakdown of malachite green. The effects of several parameters, including pH change, anions presence, contact time, catalyst amount, concentration variation, and the kinetics of photocatalytic degradation were investigated. The magnitude of transition energy calculated using UV-DRS spectra was found to be 3.1 eV for CuCr2O4-TiO2 nanocomposite. Maximum degradation was observed at pH 7.0. The surface area and pore volume of the co-doped samples of Cr2O4 - TiO2 obtained from BET were found to be 6.1213 m2/g and 0.045063 cm3/g respectively. The average particle size of the catalyst of the nano-catalysts calculated from XRD was found to be 8 nm for TiO2 and 66 nm for TiO2-CuCrO4. The peaks obtained in FTIR between the range of 900-500 cm-1 were due to the presence of an aromatic compound. The binding mechanism of a dye molecule to the surface of CuCr2O4-TiO2 nanocomposite was analysed using quantum chemical calculations with the self-consistent reaction field technique employing integral equation formalism for the polarized continuum method and the UFF atomic radii set.
    Matched MeSH terms: Nanoparticles*
  10. Ooi JSY, Lim CR, Hua CX, Ng JF, New SY
    Langmuir, 2023 Oct 31;39(43):15200-15207.
    PMID: 37851548 DOI: 10.1021/acs.langmuir.3c01748
    This study investigates the effect of DNA hairpins on the stabilization of gold nanoparticles (AuNPs) against salt-induced aggregation (SIA) in label-free colorimetric biosensors. AuNPs were incubated with DNA hairpins of varying stem lengths and toehold sequences, followed by the addition of NaCl, before being subjected to ultraviolet-visible (UV-vis) measurement. Results showed that hairpins with longer stems generally provide better stabilization of AuNPs (18-bp >14-bp >10-bp). No improvement was observed for 14- and 18-bp hairpins with a toehold beyond 8A, which may be attributed to saturated adsorption of hairpins on the gold surface. For 14-bp hairpins with an 8-mer homopolymeric toehold, we observed a stabilization trend of A > C > G > T, similar to the reported trend of ssDNA. For variants containing ≥50% adenine as terminal bases, introducing cytosine or guanine as preceding bases could also result in strong stabilization. As the proportion of adenine decreases, variants with guanine or thymine provide less protection against SIA, especially for guanine-rich hairpins (≥6G) that could form G-quadruplexes. Such findings could serve as guidelines for researchers to design suitable DNA hairpins for label-free AuNP-based biosensors.
    Matched MeSH terms: Metal Nanoparticles*
  11. Qin D, Gong Q, Li X, Gao Y, Gopinath SCB, Chen Y, et al.
    Biotechnol Appl Biochem, 2023 Apr;70(2):553-559.
    PMID: 35725894 DOI: 10.1002/bab.2377
    Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school-going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae.
    Matched MeSH terms: Metal Nanoparticles*
  12. Koosha N, Mosavi V, Kheirollah J, Najafi N, Abdi N, Alizadeh A, et al.
    J Therm Biol, 2023 Oct;117:103718.
    PMID: 37812951 DOI: 10.1016/j.jtherbio.2023.103718
    The study of blood flow in obstructed arteries is a significant focus in computational fluid dynamics, particularly in the field of biomedicine. The primary objective of this research is to investigate the impact of pulsating blood velocity on heat transfer within biological systems, with a specific focus on blood flow in obstructed arteries. To achieve this goal, a comprehensive 3D model representing a straight, constricted blood vessel has been developed. This model incorporates periodic, unsteady, Newtonian blood flow along with the presence of gold and silver nanoparticles. Leveraging the Finite Element Method (FEM), the Navier-Stokes and energy equations have been rigorously solved. Through the investigation, it is aim to shed light on how alterations in the pulsation rate and the volume fraction of nanoparticles influence both temperature distribution and velocity profiles within the system. The present study findings unequivocally highlight that the behavior of pulsatile nanofluid flow significantly impacts the velocity field and heat transfer performance. However, it is imperative to note that the extent of this influence varies depending on the specific volume fractions involved. Specifically, higher volume fractions of nanofluids correlate with elevated velocities at the center of the vessel and decreased velocities near the vessel walls. This pattern also extends to the temperature distribution and heat flux within the vessel, further underscoring the paramount importance of pulsatile flow dynamics in biomedicine and computational fluid dynamics research. Besides, results revealed that the presence of occlusion significantly affects the heat transfer and fluid flow.
    Matched MeSH terms: Metal Nanoparticles*
  13. Isa T, Zakaria ZA, Rukayadi Y, Mohd Hezmee MN, Jaji AZ, Imam MU, et al.
    Int J Mol Sci, 2016;17(5).
    PMID: 27213349 DOI: 10.3390/ijms17050713
    The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.
    Matched MeSH terms: Nanoparticles/chemistry*
  14. Khan AA, Akhtar S, Yadav Y, Atiya A, Alelwani W, Bannunah AM, et al.
    Curr Drug Deliv, 2023;20(10):1474-1486.
    PMID: 35980056 DOI: 10.2174/1567201819666220817111054
    BACKGROUND: The antiretroviral protease inhibitor drug, lopinavir (LPV), is used to treat HIV-1 infection. LPV is known to have limited oral bioavailability, which may be attributed to its poor aqueous solubility, low efficacy and high first-pass metabolism. Self-nanoemulsifying drug delivery systems (SNEDDS) for LPV have been developed and optimised to counter the current issues.

    METHODS: The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.

    RESULTS: The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).

    CONCLUSION: The LPV-SNEDDS could be a potential carrier for LPV oral delivery.

    Matched MeSH terms: Nanoparticles*
  15. Firoozi A, Amphawan A, Khordad R, Mohammadi A, Jalali T, Edet CO, et al.
    Sci Rep, 2023 Jul 13;13(1):11325.
    PMID: 37443203 DOI: 10.1038/s41598-023-38475-1
    A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.
    Matched MeSH terms: Metal Nanoparticles*
  16. Sonam Dongsar T, Tsering Dongsar T, Molugulu N, Annadurai S, Wahab S, Gupta N, et al.
    Environ Res, 2023 Sep 15;233:116455.
    PMID: 37356522 DOI: 10.1016/j.envres.2023.116455
    Breast carcinoma is a molecularly diverse illness, and it is among the most prominent and often reported malignancies in female across the globe. Surgical intervention, chemotherapy, immunotherapy, gene therapy, and endocrine treatment are among the currently viable treatment options for the carcinoma of breast. Chemotherapy is among the most prevalent cancer management strategy. Doxorubicin (DOX) widely employed as a cytostatic medication for the treatment of a variety of malignancies. Despite its widespread acceptance and excellent efficacy against an extensive line up of neoplasia, it has a variety of shortcomings that limit its therapeutic potential in the previously mentioned indications. Employment of nanoparticulate systems has come up as a unique chemo medication delivery strategy and are being considerably explored for the amelioration of breast carcinoma. Polylactic-co-glycolic acid (PLGA)-based nano systems are being utilized in a number of areas within the medical research and medication delivery constitutes one of the primary functions for PLGA given their inherent physiochemical attributes, including their aqueous solubility, biocompatibility, biodegradability, versatility in formulation, and limited toxicity. Herein along with the different application of PLGA-based nano formulations in cancer therapy, the present review intends to describe the various research investigations that have been conducted to enumerate the effectiveness of DOX-encapsulated PLGA nanoparticles (DOX-PLGA NPs) as a feasible treatment option for breast cancer.
    Matched MeSH terms: Nanoparticles*
  17. Sheikh A, Hazari SA, Molugulu N, Alshehri SA, Wahab S, Sahebkar A, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117086.
    PMID: 37683783 DOI: 10.1016/j.envres.2023.117086
    Psoriasis is a deleterious auto-immune disorder which seriously harms the patients physical and mental health. CD44 are found to be over-expressed on psoriatic lesions which are highly responsible for epidermal hyperproliferation and inflammation. Gallic acid (GA), a phenolic acid natural compound has potential inhibitory impact on pro-inflammatory transcription factors. However, the penetration across skin and availability is low when applied topically, making the treatment extremely challenging. Considering such factors, we developed GA loaded chitosan nanoparticles and modified with hyaluronic acid (HA) (HA@CS-GA NP) to assess the therapeutic potential against psoriasis. The formulations were characterized by DSC, zetasizer and TEM for assuring the development of nanosystems. GA loaded CS NP had a particle size of 207.2 ± 0.08 nm while after coating with HA, the size increased to 220.1 ± 0.18 nm. The entrapment efficiency was 93.24 ± 0.132% and drug loading of 73.17 ± 0.23%. The in vitro cell viability assessment study confirmed enhanced anti-proliferative effect of HA@CS-GA NP over plain GA which is due to high sensitivity towards HaCaT cell. The in vivo results on imiquimod induced psoriasis model indicated that CD44 receptor mediated targeted approach of HA@CS-GA NP gel had great potential in restricting the keratinocyte hyperproliferation and circumventing psoriasis. For the therapy of further skin-related conditions, HA modified nanoparticles should be investigated extensively employing genes, antibodies, chemotherapeutics, or natural substances.
    Matched MeSH terms: Nanoparticles*
  18. Abdullah M, Rafiq A, Shahid N, Nasir Kalam M, Munir Y, Daoud Butt M, et al.
    Pak J Pharm Sci, 2023 Nov;36(6(Special)):1849-1858.
    PMID: 38264890
    Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
    Matched MeSH terms: Nanoparticles*
  19. Othman SH, Shapi'i RA, Ronzi NDA
    Carbohydr Polym, 2024 Apr 01;329:121735.
    PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735
    Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
    Matched MeSH terms: Nanoparticles*
  20. Shazleen Ibrahim I, Starlin Chellathurai M, Mahmood S, Hakim Azmi A, Harun N, Ulul Ilmie Ahmad Nazri M, et al.
    Int J Pharm, 2024 Feb 15;651:123735.
    PMID: 38142874 DOI: 10.1016/j.ijpharm.2023.123735
    Colorectal cancer (CRC) continues to be one of the most prevalent and deadliest forms of cancer worldwide, despite notable advancements in its management. The prognosis for metastatic CRC remains discouraging, with a relative 5-year survival rate for stage IV CRC patients. Conventional treatments for advanced malignancies such as chemotherapy, often face limitations in effectively targeting cancer cells resulting in off-target distribution and significant side effects. In the quest for better strategies, researchers have explored numerous alternatives. Among these, nanoparticles (NPs) specifically liposomes have emerged as one of the most promising candidates in developing targeted delivery systems for cancer therapeutics. This review discusses the current approaches employing functionalised liposomes to overcome major biological barriers in therapeutics delivery for CRC treatment. We have also shared our perspectives on the technological development of liposomes for future clinical use and highlighted a few useful insights on the material choices for future research work in CRC.
    Matched MeSH terms: Nanoparticles*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links