This review of literature provides an overview on the compositional data of Rambutan (Nephelium lappaceum Linn.) and rambutan seed fat for usage in chocolate product. It is a seasonal fruit native of west Malaysia and Sumatra. It is harvested when the fruit have reached optimum visual and organoleptic quality. Rambutans rapidly deteriorate unless proper handling techniques are employed. The rambutan fruits are deseeded during processing and these seeds (~ 4-9 g/100 g) are a waste by-product of the canning industry. And some studies was showed that rambutan seed possesses a relatively high amount of fat and these fats are similar to those of cocoa fat, although have some different physical properties. In the present research about rambutan seed fat continued increasing due to from previous research was found that this fat can use as substitute in cocoa butter for chocolate products. Therefore, the extracted fat from rambutan seed not only could be used for manufacturing candles, soaps, and fuels, but it also has a possible to be a source of natural edible fat with feasible industry use.
Curcuma alismatifolia, is an Asian crop from Zingiberaceae family, popularly used as ornamental plant in floriculture industry of Thailand and Cambodia. Different varieties with a wide range of colors can be found in species. Until now, few breeding programs have been done on this species and most commercially important cultivars are hybrids that are propagated vegetatively. In spite of other flowering plants, there is still lack of transcriptomic-based data on the functions of genes related to flower color in C. alismatifolia. The raw data presented in this article provides information on new original transcriptome data of two cultivars of C. alismatifolia by Illumina Hiseq. 4000 RNA-Seq technology which is the first ever report about this plant. The data is accessible via European Nucleotide Archive (ENA) under project number PRJEB18956.
Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
Garcinia mangostana L. (mangosteen) seed is recalcitrant, prone to low temperature and drying which limit its long-term storage. Therefore, it is imperative to understand the metabolic changes throughout its development, to shed some light into the recalcitrant nature of this seed. We performed metabolomics analysis on mangosteen seed at different stages of development; six, eight, ten, twelve and fourteen weeks after anthesis. Seed samples were subjected to methanol extraction prior analysis using liquid chromatography - mass spectrometry (LC-MS). The MS data acquired were analyzed using ProfileAnalysis (version 2.1). This data article refers to the article entitled "Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds" (Mazlan et al., 2018) [1].
The effects of zeolite and zinc foliar applications on the biochemical characteristics of canola cultivars under different moisture regimes were investigated in a study conducted during the 2010 and 2011 growing seasons. The study was completed using a factorial split-plot experiment based on randomized complete block design (RCBD) with three replications at the Seed and Plant Improvement Institute (SPII), Karaj, Iran. The treatments were: irrigation (I): complete (I1) and restricted (I2); zeolite (Z): 0 (Z1) and 15 ton ha-1 (Z2) and Zn: 0, 0.1 and 0.2% concentrations of zinc sulfate (Zn1, Zn2, and Zn3) at the pod formation stage. These treatments were applied during the pod formation stage to the Licord, RGS003 and Opera cultivars. This study showed that although applying Z and Zn had positive effects on the quality of canola, the highest performance and the best results were obtained using a combination of Z and Zn. The combined application of Z and Zn decreased the proline and carbohydrate contents to 44.35 and 34.42%, respectively. Therefore, with the low cost of natural Z and moderate Zn intake, these treatments can be used to enhance the performance of canola, especially in regions frequently subjected to water stress.
Pueraria javanica Benth. is one of the most common leguminous cover crop used in oil palm plantations of Malaysia. A study was conducted to determine the allelopathic potential of this plant, using the aqueous extract, sandwich and dish-pack methods, with the seed and leaf (of P. javanica) on three bioassay weed species namely, Eleusine indica, Cyperus iria and Chromolaena odorata. The aqueous extract experiment was conducted using 0 (control), 16.7, 33.3 and 66.7 g/L of the aqueous leaf and seed extracts while the sandwich method was carried out using 10 and 50 mg of each of the donour plant parts. Meanwhile, the dish-pack method was done using four different distances (41, 58, 82 and 92 mm) away from the donour plant. All experiments were replicated five times using the complete randomized design (CRD). The leaf extract exhibited 100% reduction on the fresh weight of E. indica and C. odorata while the seed extract exhibited 100% reduction on all parameters for E. indica and on the fresh weight of C. iria at 66.7 g/L concentration. The seed and leaf at 10 and 50 mg significantly reduced the radicle length of all the bioassay species. The dish-pack experiment also showed a reduction effect on the germination percentage and seedling growth parameters of all the bioassay species. However, the reduction effect was not totally in accordance to the distance from the donor species. More studies need to be conducted to determine the type of reduction mechanism involved in the allelopathic activity especially with respect to molecular and biochemical aspects.
Seaweed industry is important in several countries including Malaysia, Japan, Indonesia, and the Philippines. The seaweed, Kappaphycus is widely used in a variety of food products as an excellent nutritional supplement. There are several stages in producing raw Kappaphycus for industry such as cultivation and harvest. Most of these steps follow a traditional way which has been practiced from one generation to another. As seaweed is part of the main ingredients in many final produce, its processing must incorporate cleanliness and quality aspect. Therefore, a focus on Halal is of utmost importance. Halal is a concept that stresses on shariah law and ensuring the utmost quality which benefits most producers especially in food and supplement products. However, the knowledge of Halal is still limited in marine production including seaweed. The seaweed process has gone through numerous stages yet none of them has been checked on its
Halalness aspect. This study is to deliberate on the aspect of Halalness for each stage involved, including cultivation and harvesting. To achieve this, observations and literature search were performed and findings showed that there is lack of hygienic practices in handling seaweed production. Therefore, conjoint initiatives among university-industry-government are needed to enhance the value proposition of the seaweed production as it complies with the concept of Halalness. This will contribute towards the development of Halal ecosystem from seed to harvest of quality seaweed production.
In a laboratory trial three chickpea varieties viz, Karak-I, Karak-III and Shenghar were tested against the phytotoxicity of five weed species: Parthenium hysterophorus L., Phragmites australis (Cav.) Trin., Datura alba L., Cyperus rotundus L. and Convolvulus arvensis L.in January 2013. The weed extracts were prepared at the rate of 120 g/L (w/v) after shade dry. The results indicated highly significant inhibitory effect of all the tested weed species on the chickpea varieties. The results also showed that the chickpea variety Karak-III was more susceptible to the phytotoxcity of the tested weed extracts. Among the extract, C. arvensis proved much toxic in term of inhibition of germination by giving only 43.33% germination in comparison with control where 97.50% germination was recorded. On the other hand, the effect of P. australis extract was found a little stimulator by speeding the seed germination in all varieties and giving a low (2.21) mean germination time (MGT) value. From the current results it can be concluded that the infestation of C. arvensis can pollute the soil by accumulating toxic chemicals that leads to the germination failure and growth suppression in chickpea. Therefore, the prevention and removal of C. arvensis in the chickpea growing areas could be recommended. In addition, P. australis must be tested against chickpea weeds (chickpea varieties withstand against its phytotoxcity), so that it can be popularized as bioherbicide in chickpea if it gave promising results in controlling chickpea weeds.
A study to evaluate the effect of four selected plant powder as rice grain protectant against Sitophilus zeamais adult mortality, F1 progeny production, weight loss and rice grain damaged was conducted. The plant powders used were made from seed of Annona muricata, Jatropha curcas, Azadirachta indica and from leaf of J. curcas at 0.5, 1, 1.5, 2 and 2.5% (w/w) concentrations. Probit analysis showed that J. curcas seed powder was highly toxic (LC50 = 0.28%) to S. zeamais adult followed by A. muricata seed (LC50 = 0.33%), J. curcas leaf (LC50 = 1.15%) and A. indica seed (LC50= 3.63%). The Annona muricata and J. curcas seed had caused the highest mean mortality (100 and 98.85%) at 2% concentration, while the A. indica seed and J. curcas leaf powder had only caused 32.32 and 77.84%, respectively at 2.5% concentration. There was no progeny produced, no weight loss recorded and no rice grain damaged on treated rice grain with A. muricata and J. curcas seed at 1% concentration. In contrast, J. curcas leaf and A. indica seed powder had the least toxicity effect on the weevil as shown by number of progeny produced (167 and 228), total of weight loss (10.04 and 10.49%) and rice grain damaged (19.35 and 21.14%) even at the highest powder concentration (2.5%)
tested. Results of this study revealed the potential of J. curcas and A. muricata seed powder to be used in controlling S. zeamais on stored rice grain.
Phaleria macrocarpa seeds are rapidly killed with desiccation to moisture content (MC) below 20%. Desiccation tolerance of their embryonic axes was studied for storage and germplasm conservation purposes. Embryonic axes were extracted aseptically from fresh seeds obtained from fully ripe fruits in a horizontal laminar air flow cabinet. They were then desiccated under aseptic condition for periods ranging from 0-8 h. For each desiccation treatment, embryonic axes were drawn randomly for the determination of MC according to ISTA, electrolyte leakage and proliferation on Murashige and Skoog (MS) media supplemented with 1 mg/l 6-benzylaminopurine (BAP) and 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). The results obtained from this study indicated that the embryonic axes could tolerate dehydration down to 13.6% with desiccation for 8 h while retaining relatively high viability of 76.7%. This was supported by only gradual increment of electrolyte leakage with the desiccated embryonic axes. All non-desiccated embryonic axes with MC of 52.5% were capable to grow into normal plantlets in vitro but dehydration to MC of 36.0% and further down to 13.6% generally resulted in callus formation with up to 16.7% of the embryonic axes while at least 60.0% of the other embryonic axes were still capable to proliferate as normal plantlets in vitro.
Phenotypic selection of individuals is the first step in a selective breeding program for elite hybrid seed production. In
this study, a total of 295 Jatropha curcas individuals raised from cuttings representing 21 accessions, collected from eight
different countries were evaluated for growth performance. The evaluation was done at the Biodiesel Research Station
of Universiti Kebangsaan Malaysia, Kuala Pilah from December 2012 to December 2013. Individual plants from each
accession were observed on several agronomic and yield related traits and all the data were recorded periodically.
Performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Four traits which were plant
height (PH), number of flowers per inflorescence (NFI), number of female flowers per inflorescence (NFFPI) and hundred
seed weight (HSW) showed significant differences among the accessions after one year of planting. Maximum values for
each trait were 115.5 cm for PH, 6 for number of branches per plant (BPP), 9 for number of inflorescences per plant
(NIPP), 25 for number of fruits per plant (NFPP), 5 for number of fruits per inflorescence (NFPI), 191 for NFI, 10 for
NFFPI, 81.0 g for HSW and 70 for number of seeds per plant (NSPP). Accession number 1 from Thailand showed the best
performance for most traits. A highly significant and positive correlation was found between NFPP and NSPP. Based on
superior trait values for NIPP, NFPP, NFPI, NFI, NFFPI and HSW, five plants from accession UKMJC 01, 04, 05, 13 and 14
have been selected for generating elite intraspecific hybrids.
Thymoquinone (TQ) is the main pharmacologically active compound found in the seeds oil of Nigella
Sativa. Various studies had been investigated on the therapeutic effects of TQ against several diseases such as
anticancer research, antibacterial, and so on. As a result, a considerable amount of information has been
generated from these researches thus providing a better understanding of the promising effects of this
compound. However, research studies on the potential role of this compound on opioid addiction studies are
still lacking. Therefore, the purpose of this paper is to highlight the potential role of TQ as a non-opioid
substitution therapy in opioid addiction and the chances of this compound to be explored further with special
attention to opioid substitution therapy.
The present study examines the effect of human monoamine oxidase active anthraquinones emodin, alaternin (=7-hydroxyemodin), aloe-emodin, and questin from Cassia obtusifolia Linn seeds in modulating human dopamine (hD1R, hD3R, and hD4R), serotonin (h5-HT1AR), and vasopressin (hV1AR) receptors that were predicted as prime targets from proteocheminformatics modeling via in vitro cell-based functional assays, and explores the possible mechanisms of action via in silico modeling. Emodin and alaternin showed a concentration-dependent agonist effect on hD3R with EC50 values of 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively. On hV1AR, emodin and alaternin showed an antagonist effect with IC50 values of 10.25 ± 1.97 and 11.51 ± 1.08 μM, respectively. Interestingly, questin and aloe-emodin did not have any observable effect on hV1AR. Only alaternin was effective in antagonizing h5-HT1AR (IC50: 84.23 ± 4.12 μM). In silico studies revealed that a hydroxyl group at C1, C3, and C8 and a methyl group at C6 of anthraquinone structure are essential for hD3R agonist and hV1AR antagonist effects, as well as for the H-bond interaction of 1-OH group with Ser192 at a proximity of 2.0 Å. Thus, based on in silico and in vitro results, hV1AR, hD3R, and h5-HT1AR appear to be prime targets of the tested anthraquinones.
Due to the increasing production and use of nanoparticles in various sectors such as electronic industries and healthcare,
concerns about the unknown effects caused by the presence of these materials in the natural environment and agricultural
systems were on the rise. Because of the growing trend of ZnO nanoparticles (nZnO) which is one of the most widely
used nanoparticles being released into the environment, it has attracted the attention for more studies to be done on
the effects of this nanoparticle on organisms. This study was carried out to investigate the phytotoxicity effect of nZnO
on groundnut seedlings in Murashige and Skoog (MS) medium. The experimental treatments of this study include eight
concentrations of nZnO (10, 30, 50, 100, 200, 400, 1000 & 2000 mg.L-1) added to MS medium and MS medium without
nanoparticles have been used as control treatment. For the first 6 days after sowing, germination percent and germination
rate index were calculated by counting the germinated seeds every day. Groundnut seedlings were incubated for 3 weeks
in optimum condition and after that, seedling characteristics such as length, wet and dry weight of radicle and plumule
were measured. The water content of radicle and plumule were also calculated. The results of this study showed that
radicle and plumule length of groundnut seedlings were affected by nZnO exposure, in a way that length of radicles in 50
mg.L-1 nZnO and higher concentrations was significantly lower than that of control treatment and the shortest plumule
length was observed in 2000 mg.L-1 nZnO concentration treatment. Both the radicle and plumule wet weight were also
decreased as the nanoparticle concentration was increased. However, despite the decreasing in radicle and plumule dry
weight with increasing in nZnO concentration, this increase was not significant. However radicle dry weight in 10 mg.L-1
nZnO was significantly higher than nZnOtreatments with 200 mg.L-1 concentration and higher concentrations. Moreover,
observations of this study did not show any significant difference between the water content of nZnO concentration
treatments and control treatment.
The transesterification of Thevetia peruviana seed oil with dimethyl carbonate (DMC) for preparing biodiesel has been studied using as an active catalyst potassium-methoxide (KOCH3). The effects of reaction conditions: Molar ratio of dimethyl carbonate to Thevetia peruviana seed oil, catalyst concentration, reaction time and agitation speed on dimethyl esters (DMC-Tp-BioDs) yield were investigated. The highest DMC-Tp-BioDs yield could reach 97.1% at refluxing temperature for 90 min with molar ratio of DMC-to-oil 5:1 and 2.0% w/w KOCH3 (based on oil weight). The fuel properties of the produced DMC-Tp-BioDs were compared with the ASTM D6751-02 biodiesel standard.
Boron is considered important to improve the drought resistance, yield and protein contents of pulses. Two years of field experiment was conducted to evaluate the effect of boron application and water stress given at vegetative and flowering stages on growth, yield and protein contents of mungbean during spring 2014 and 2015. The experiment was laid out in randomized complete block design with split-plot arrangement giving more emphasis to boron. The experiment comprised three water stress levels (normal irrigation, water stress at vegetative stage and water stress at reproductive phase) and four boron levels (0, 2, 4 and 6 kg ha-1). Final seed yield was significantly increased by different levels of boron application both under normal and water stressed conditions. The increase in yield was mainly due to greater plant height, number of pods bearing branches, number of pods per plant, number of seeds per pod and 1000-grain weight. Boron application at 4 kg ha-1 caused 17%, 10% and 4% increase in grain yield under normal irrigation, stress at vegetative stage and water stress at reproductive phase, respectively. Protein contents were also increased (9-16%) at same boron treatment. Most parameters showed a marked decrease at higher dose (6 kg ha-1) of boron. In conclusion, the boron application at rate of 4 kg ha-1 in clay-loam soil performed the best to enhance mungbean growth, yield and seed protein both under normal and water stressed conditions.
The main focus of this study was to examine the morphology of Mimosa pigra, an invasive weed in response to artificial biotic and abiotic stressors. Seedlings of M. pigra were subjected to stressors such as seed sowing density, leaf defoliation and water regime. Comparatively, morphological performance related to different sowing practices differed significantly (p<0.05), as seedlings that grew from high density populations had lean and outstanding apical growth. A comparison between the four different levels of defoliation on the morphological changes revealed that the increase in leaf defoliation significantly decreased the plant morphological traits (i.e. height, stem diameter and flower bud productivity) and biomass allocation. Relatively low growth performance was found in plants subjected to 100% defoliation, with markedly lower flower bud productivity in comparison with 0%, 25% and 50% (no flower buds compared to 27, 13 and 6 flower buds, respectively). For water stress treatment, M. pigra showed no significant difference (p>0.05) in morphological performance under different levels of water regime. However, seedlings that received low water (LW) treatment showed better growth performance than seedlings that received high water (HW) treatment, which had the lowest morphological traits and biomass allocation.
Mangosteen (Garcinia mangostana L.) has exceptional potential for commercial and pharmaceutical applications due to its delicious fruit and medicinal properties. Nevertheless, the molecular mechanism of mangosteen seed development is poorly understood. In this study, we performed transcriptomic analysis of four seed developmental stages; eight, ten, twelve and fourteen weeks after anthesis. Illumina HiSeq™ 4000 sequencer was used to generate raw data of approximately 68 Gb in size. From 451,495,326 raw reads, 406,143,756 clean reads were obtained. The raw data were uploaded to SRA database and the BioProject ID is PRJNA395504. These data provide the basis for further exploration and understanding of the molecular mechanism in mangosteen seed development.
This study was conducted to compare the total antioxidant activity (TAA), total phenolic content (TPC) and total flavonoid content (TFC) from the different parts of papaya tree including their ripe and unripe fruit, seeds and the young leaves. Two methods namely DPPH radical scavenging activity and ß-carotene bleaching assay were used to determine the TAA, whereas TPC was determined by Folin-Ciocalteu’s method while TFC by aluminium trichloride (AlCl3). For these purposes, methanolic extracts (80%) were prepared. The results showed that the highest antioxidant activity through ß-carotene bleaching assay was observed in unripe fruit (90.67 ± 0.29%) followed by young leave, ripe fruit and the seed. In other hand, young leaves exhibited a significant higher scavenging effect compared to others and the dose required in reducing the absorbance of DPPH control solution by 50% (EC50) was calculated at 1.0 ± 0.08mg/ml. The EC50 values were 4.3 ± 0.01mg/ml, 6.5 ± 0.01mg/ml and 7.8 ± 0.06mg/ml for unripe fruit, ripe fruit and seeds respectively. Interestingly, both TPC and TFC also showed that young leaves had the highest antioxidant content (424.89 ± 0.22mg GAE/ 100 g dry weight and 333.14 ± 1.03mg rutin equivalent/ 100 g dry weight, respectively). Statistically, Pearson correlation showed there were positive correlations between TPC and TFC with antioxidant activity assayed by DPPH radical scavenging assay (r=0.846 and r=0.873, respectively). However there was no correlation between TPC and TFC with ß-carotene bleaching activity. In brief, taken into account all the parameters measured, antioxidants were highly remarkable in the sequence of young leaves > unripe fruit > ripe fruit > seed. Nevertheless, further investigation for isolation and identification of the phytoconstituents responsible for antioxidant activity is desirable.
Kenaf (Hibiscus cannabinus L.) seed is a non-conventional edible oilseed that can be valorized into various food products. There is a recent discovery of kenaf seed beverage (KSB) potential as a novel plant-based beverage. KSB had less crude protein than soybean (SB)but more carbohydrate, magnesium, and phosphorus contents.Levels of crude fat, phytates, oxalates, total saponins, and lipid peroxidability in KSB were lower than SB. Sugar content between KSB and SB were comparable, while antioxidant properties of KSB were superior. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis detected gluconic acid, citric acid, palmitic acid, oleic acid, and 13-hydroxyoctadecadienoic acid in both KSB and SB. Considering its novelty, acute and subacute oral toxicity assessments in male Sprague Dawley rats were conducted. The acute toxicity assessment was performed at a single dose of 9.2 ml/kg body weight of KSB. In the following subacute toxicity assessment, different groups of rats consumed different doses of KSB (3.1, 6.1, and 9.2 ml/kg body weight) daily for 28 days. Rats presented normal behavioral and physiological states in both toxicity studies. Growth, food and water intakes, organ weight, and hematological parameters were unaffected. No mortality was reported. Several alterations in serum biochemical parameters were within the normal range, and unassociated with histopathological changes. The oral lethal dose (LD50) and the no-observed-adverse-effect-level (NOAEL) of KSB in rats was greater than 9.2 ml/kg (=1533 mg/kg) body weight. Interestingly, KSB exhibited comparable effects with soybean beverage (SB) on high-density lipoprotein cholesterol and triglycerides which worth further research Follow-up toxicity assessments in animals and human trials are also recommended to ascertain its long term safety.