METHODS: A prospective cohort study of all patients with COVID-19 found in the Electronic Medical Records of Jaber Al-Ahmad Al-Sabah Hospital in Kuwait was conducted. The study included 3995 individuals (symptomatic and asymptomatic) of all ages who tested positive from February 24th to May 27th, 2020, out of which 315 were treated in the ICU and 3619 were discharged including those who were transferred to a different healthcare unit without having previously entered the ICU. A competing risk analysis considering two events, namely, ICU admission and hospital discharge using flexible hazard models was performed to describe the association between event-specific probabilities and patient characteristics.
RESULTS: Results showed that being male, increasing age and comorbidities such as chronic kidney disease (CKD), asthma or chronic obstructive pulmonary disease and weakened immune system increased the risk of ICU admission within 10 days of entering the hospital. CKD and weakened immune system decreased the probabilities of discharge in both females and males however, the age-related pattern differed by gender. Diabetes, which was the most prevalent comorbid condition, had only a moderate impact on both probabilities (18% overall) in contrast to CKD which had the largest effect, but presented only in 7% of those admitted to ICU and in 1% of those who got discharged. For instance, within 5 days a 50-year-old male had 19% (95% C.I.: [15,23]) probability of entering the ICU if he had none of these comorbidities, yet this risk jumped to 31% (95% C.I.: [20,46]) if he had also CKD, and to 27% in the presence of asthma/COPD (95% C.I.: [19,36]) or of weakened immune system (95% C.I.: [16,42]).
CONCLUSIONS: This study provides useful insight in describing the probabilities of ICU admission and hospital discharge according to age, gender, and comorbidities among confirmed COVID-19 cases in Kuwait. A web-tool is also provided to allow the user to estimate these probabilities for any combination of these covariates. These probabilities enable deeper understanding of the hospital demand according to patient characteristics which is essential to hospital management and useful for developing a vaccination strategy.
METHOD: This study proposes a combination of decision tree and logistic regression techniques to model crash severity (injury vs. noninjury), because the combined approach allows the specification of nonlinearities and interactions in addition to main effects. Both a scobit model and a random parameters logit model, respectively accounting for an imbalance response variable and unobserved heterogeneities, are tested and compared. The study data set contains a total of 5 years of crash data (2008-2012) on selected mountainous highways in Malaysia. To enrich the data quality, an extensive field survey was conducted to collect detailed information on horizontal alignment, longitudinal grades, cross-section elements, and roadside features. In addition, weather condition data from the meteorology department were merged using the time stamp and proximity measures in AutoCAD-Geolocation.
RESULTS: The random parameters logit model is found to outperform both the standard logit and scobit models, suggesting the importance of accounting for unobserved heterogeneity in crash severity models. Results suggest that proportion of segment lengths with simple curves, presence of horizontal curves along steep gradients, highway segments with unsealed shoulders, and highway segments with cliffs along both sides are positively associated with injury-producing crashes along rural mountainous highways. Interestingly, crashes during rainy conditions are associated with crashes that are less likely to involve injury. It is also found that the likelihood of injury-producing crashes decreases for rear-end collisions but increases for head-on collisions and crashes involving heavy vehicles. A higher order interaction suggests that single-vehicle crashes involving light and medium-sized vehicles are less severe along straight sections compared to road sections with horizontal curves. One the other hand, crash severity is higher when heavy vehicles are involved in crashes as single vehicles traveling along straight segments of rural mountainous highways.
CONCLUSION: In addition to unobserved heterogeneity, it is important to account for higher order interactions to have a better understanding of factors that influence crash severity. A proper understanding of these factors will help develop targeted countermeasures to improve road safety along rural mountainous highways.