Displaying publications 141 - 160 of 443 in total

Abstract:
Sort:
  1. Fasahat P, Muhammad K, Abdullah A, Wickneswari R
    Genet. Mol. Res., 2012;11(3):3534-46.
    PMID: 23079848 DOI: 10.4238/2012.September.26.10
    A limited backcross procedure was utilized to introgress genes associated with grain quality traits from Oryza rufipogon (Accession No. IRGC 105491), a wild rice from Malaysia, to the cultivated rice O. sativa cv. MR219, a popular high yielding Malaysian rice cultivar. A set of 10 BC(2)F(7) progenies were selected based on the field performance and phenotypic appearance in BC(2)F(5) and BC(2)F(6) generations, which initially started with 266 progenies in the BC(2)F(2) generation. These 10 advanced breeding lines are similar to each other but differ in several important grain quality traits, which can be traced to O. rufipogon introgressions. Phenotyping and genotyping of BC(2)F(7) variants were considered for QTL analysis. The introgressed lines did not show any significant changes compared to the recurrent parent MR219 for the traits grain density and milled rice percentage. All 10 progenies showed significantly higher head rice percentages (70-88%) than the recurrent parent MR219. Variants G13 and G15 had higher amylose contents than MR219. All variants were analyzed using polymorphic SSR markers. Of the 34 SSR markers, only 18 showed introgression from O. rufipogon for chromosomes 1, 2, 3, 5, 6, 8, 10, and 11. Graphical genotypes were prepared for each variant, and association between the introgression regions and the traits that increased grain quality was visualized. Based on marker trait association, some of the QTLs are stable across environments and genetic backgrounds and could be used universally.
    Matched MeSH terms: Polymorphism, Genetic
  2. Ashkani S, Rafii MY, Sariah M, Siti Nor Akmar A, Rusli I, Abdul Rahim H, et al.
    Genet. Mol. Res., 2011 Jul 06;10(3):1345-55.
    PMID: 21751161 DOI: 10.4238/vol10-3gmr1331
    Among 120 simple sequence repeat (SSR) markers, 23 polymorphic markers were used to identify the segregation ratio in 320 individuals of an F(2) rice population derived from Pongsu Seribu 2, a resistant variety, and Mahsuri, a susceptible rice cultivar. For phenotypic study, the most virulent blast (Magnaporthe oryzae) pathotype, P7.2, was used in screening of F(2) population in order to understand the inheritance of blast resistance as well as linkage with SSR markers. Only 11 markers showed a good fit to the expected segregation ratio (1:2:1) for the single gene model (d.f. = 1.0, P < 0.05) in chi-square (χ(2)) analyses. In the phenotypic data analysis, the F(2) population segregated in a 3:1 (R:S) ratio for resistant and susceptible plants, respectively. Therefore, resistance to blast pathotype P7.2 in Pongsu Seribu 2 is most likely controlled by a single nuclear gene. The plants from F(2) lines that showed resistance to blast pathotype P7.2 were linked to six alleles of SSR markers, RM168 (116 bp), RM8225 (221 bp), RM1233 (175 bp), RM6836 (240 bp), RM5961 (129 bp), and RM413 (79 bp). These diagnostic markers could be used in marker assisted selection programs to develop a durable blast resistant variety.
    Matched MeSH terms: Polymorphism, Genetic
  3. See LM, Hassan R, Tan SG, Bhassu S
    Genetika, 2011 Apr;47(4):566-9.
    PMID: 21675248
    Seven single locus microsatellite markers were characterized in Malaysian giant freshwater prawn, Macrobrachium rosenbergii from an enriched genomic library Primer pairs were designed to flank the repeat sequences and the loci characterized for this species. The bands resulting from the PCR amplifications of these eight microsatellite loci were polymorphic with the number of alleles ranging from 8 to 26 alleles per locus, whereas the observed heterozygosity ranged from 0.0641 to 0.6564. These newly developed microsatellite markers should prove to be useful for population studies and in the management of genetic variations in broodstocks of freshwater prawn, M. rosenbergii.
    Matched MeSH terms: Polymorphism, Genetic
  4. Manoharan B, Sulaimen Z, Omar F, Othman RY, Mohamed SZ, Bhassu S
    Genet. Mol. Res., 2011;10(2):712-6.
    PMID: 21523650 DOI: 10.4238/vol10-2gmr944
    Malaysian arowana (dragonfish; Scleropages formosus) is an ancient osteoglossid fish from southeast Asia. Due to the high demand of the ornamental fish trade and because of habitat loss, the species is close to extinction. We isolated and characterized 10 polymorphic microsatellites of this species, using 5'-anchored PCR. The number of alleles at the 10 microsatellite loci ranged from 2 to 28, with a mean of 7.8/locus. The observed heterozygosity ranged from 0.03 to 0.93 (mean: 0.39), whereas the expected heterozygosity ranged from 0.03 to 0.94 (mean: 0.46). Seven microsatellites deviated from Hardy-Weinberg equilibrium, and three conformed to Hardy-Weinberg equilibrium and were in linkage equilibrium. These 10 novel microsatellites should facilitate studies of genetic diversity and population structure of arowana to help plan actions for the conservation of the indigenous Malaysian arowana.
    Matched MeSH terms: Polymorphism, Genetic
  5. Chua KH, Ng JG, Ng CC, Hilmi I, Goh KL, Kee BP
    PeerJ, 2016;4:e1843.
    PMID: 27069792 DOI: 10.7717/peerj.1843
    Crohn's disease (CD) is a prominent type of inflammatory bowel disease (IBD) that can affect any part of the gastrointestinal tract. CD is known to have higher prevalence in the Western countries, but the number of cases has been increasing in the past decades in Asia, including Malaysia. Therefore, there is a need to investigate the underlining causes of CD that may shed light on its prevention and treatment. In this study, genetic polymorphisms in NOD1 (rs2075820), CXCL16 (rs2277680), STAT6 (rs324015) and TLR4 (rs4986791) genes were examined in a total of 335 individuals (85 CD patients and 250 healthy controls) with PCR-RFLP approach. There was no significant association observed between NOD1 rs2075820 and STAT6 rs324015 with the onset of CD in the studied cohort. However, the G allele of CXCL16 rs2277680 was found to have a weak association with CD patients (P = 0.0482; OR = 1.4310). The TLR4 rs4986791 was also significantly associated to CD. Both the homozygous C genotype (P = 0.0029; OR = 0.3611) and C allele (P = 0.0069; OR = 0.4369) were observed to confer protection against CD. On the other hand, the heterozygous C/T genotype was a risk genotype (P = 0.0015; OR = 3.1392). Further ethnic-stratified analysis showed that the significant associations in CXCL16 rs2277680 and TLR4 rs4986791 were accounted by the Malay cohort. In conclusion, the present study reported two CD-predisposing loci in the Malay CD patients. However, these loci were not associated to the onset of CD in Chinese and Indian patients.
    Matched MeSH terms: Polymorphism, Genetic
  6. Kim KS, Noh CH, Moon SJ, Han SH, Bang IC
    Mol Biol Rep, 2016 Jun;43(6):541-8.
    PMID: 27059503 DOI: 10.1007/s11033-016-3980-4
    Giant grouper (Epinephelus lanceolatus) is a commercially important species, but its wild population has recently been classified as vulnerable. This species has significant potential for use in aquaculture, though a greater understanding of population genetics is necessary for selective breeding programs to minimize kinship for genetically healthy individuals. High-throughput pyrosequencing of genomic DNA was used to identify and characterize novel tetra- and trinucleotide microsatellite markers in giant grouper from Sabah, Malaysia. In total, of 62,763 sequences containing simple sequence repeats (SSRs) were obtained, and 78 SSR loci were selected to possibly contain tetra- and trinucleotide repeats. Of these loci, 16 had tetra- and 8 had trinucleotide repeats, all of which exhibited polymorphisms within easily genotyped regions. A total of 143 alleles were identified with an average of 5.94 alleles per locus, with mean observed and expected heterozygosities of 0.648 and 0.620, respectively. Among of them, 15 microsatellite markers were identified without null alleles and with Hardy-Weinberg equilibrium. These alleles showed a combined non-exclusion probability of 0.01138. The probability of individual identification (PID) value combined with in descending order 12 microsatellite markers was 0.00008, which strongly suggests that the use of the microsatellite markers developed in this study in various combinations would result in a high resolution method for parentage analysis and individual identification. These markers could be used to establish a broodstock management program for giant grouper and to provide a foundation for genetic studies such as population structure, parentage analysis, and kinship selection.
    Matched MeSH terms: Polymorphism, Genetic
  7. Rozak NI, Ahmad I, Gan SH, Abu Bakar R
    Sci Pharm, 2014 07 18;82(3):631-42.
    PMID: 25853073 DOI: 10.3797/scipharm.1406-01
    An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x(2) = 0.72, P>0.05) or the 5HT2A polymorphism (x(2) = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population.
    Matched MeSH terms: Polymorphism, Genetic
  8. Yong HS
    Comp. Biochem. Physiol., B, 1990;97(1):119-21.
    PMID: 2147641
    1. Population samples of Bactrocera albistrigata from Peninsular Malaysia were analyzed for 12 to 14 gene-enzyme systems comprising 15-18 loci. 2. Three loci, aMDH, PGD and PGM, were polymorphic. 3. Anodal malate dehydrogenase and phosphogluconate dehydrogenase were represented by two alleles each, while phosphoglucomutase was represented by three alleles. 4. Phosphoglucomutase had a higher heterozygosity than anodal malate dehydrogenase and phosphogluconate dehydrogenase. 5. B. albistrigata was characterized by low genetic variability, as measured by the proportion of polymorphic loci and heterozygosity.
    Matched MeSH terms: Polymorphism, Genetic
  9. Yuasa I, Umetsu K, Shotake T, Ishida T, Takenaka O, Terao K, et al.
    Electrophoresis, 1990 Oct;11(10):840-5.
    PMID: 2079025
    Genetic variation of orosomucoid (ORM) in the genus Macaca was investigated. Plasma samples were subjected to isoelectric focusing in a pH range of 4-6.5, followed by immunoprinting with anti-human ORM antibodies. A total of 25 alleles were identified in 231 Asian macaques belonging to 13 species from 23 populations and 22 members belonging to a family of M. fascicularis. Family data presented evidence for a codominant mode of inheritance with multi-alleles at a single autosomal locus. A population study revealed enormous intra- and interspecies variations. The heterozygosity values varied from 0.855 in M. fascicularis (Malaysia) to 0.000 in M. radiata (India), M. silenus (India) and M. arctoides (Malaysia).
    Matched MeSH terms: Polymorphism, Genetic
  10. Blake NM, Kirk RL, Mehra B
    Hum. Hered., 1969;19(1):20-4.
    PMID: 5798080
    Matched MeSH terms: Polymorphism, Genetic
  11. Samejima M, Nakamura Y, Nambiar P, Minaguchi K
    Int J Legal Med, 2012 Jul;126(4):677-83.
    PMID: 22584910 DOI: 10.1007/s00414-012-0705-7
    We investigated 12 X-chromosomal short tandem repeat (STR) polymorphisms in 283 unrelated Malay individuals (160 males and 123 females) living in and around Kuala Lumpur using the Investigator Argus X-12 kit. Heterozygosity among the present 12 X-STRs showed a distribution of from 55.3 to 93.5 %. The diversity values of the haplotypes constructed using four closely linked groups were all higher than 0.9865. A comparison of allelic frequency in each system and haplotype variation indicated that the nature of these X-STRs in the Malay population differed from that in East Asian, European, or African populations. Several microvariant alleles found in the Malay population were characterized and compared with known sequence data. The present data may be helpful in forensic casework such as personal identification and kinship testing in the Malay population in Malaysia.
    Matched MeSH terms: Polymorphism, Genetic
  12. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Curr Mol Pharmacol, 2020;13(3):233-244.
    PMID: 31713493 DOI: 10.2174/1874467212666191111110429
    BACKGROUND: There is a large inter-individual variation in cytochrome P450 2C19 (CYP2C19) activity. The variability can be caused by the genetic polymorphism of CYP2C19 gene. This study aimed to investigate the molecular and kinetics basis for activity changes in three alleles including CYP2C19*23, CYP2C19*24 and CYP2C19*25found in the Chinese population.

    METHODS: The three variants expressed by bacteria were investigated using substrate (omeprazole and 3- cyano-7-ethoxycoumarin[CEC]) and inhibitor (ketoconazole, fluoxetine, sertraline and loratadine) probes in enzyme assays along with molecular docking.

    RESULTS: All alleles exhibited very low enzyme activity and affinity towards omeprazole and CEC (6.1% or less in intrinsic clearance). The inhibition studies with the four inhibitors, however, suggested that mutations in different variants have a tendency to cause enhanced binding (reduced IC50 values). The enhanced binding could partially be explained by the lower polar solvent accessible surface area of the inhibitors relative to the substrates. Molecular docking indicated that G91R, R335Q and F448L, the unique mutations in the alleles, have caused slight alteration in the substrate access channel morphology and a more compact active site cavity hence affecting ligand access and binding. It is likely that these structural alterations in CYP2C19 proteins have caused ligand-specific alteration in catalytic and inhibitory specificities as observed in the in vitro assays.

    CONCLUSION: This study indicates that CYP2C19 variant selectivity for ligands was not solely governed by mutation-induced modifications in the active site architecture, but the intrinsic properties of the probe compounds also played a vital role.

    Matched MeSH terms: Polymorphism, Genetic
  13. Chang CC, Connahs H, Tan ECY, Norma-Rashid Y, Mrinalini, Li D, et al.
    Mol Ecol, 2020 07;29(14):2626-2638.
    PMID: 32510793 DOI: 10.1111/mec.15502
    Identifying the genetic architecture underlying phenotypic variation in natural populations and assessing the consequences of polymorphisms for individual fitness are fundamental goals in evolutionary and molecular ecology. Consistent between-individual differences in behaviour have been documented for a variety of taxa. Dissecting the genetic basis of such behavioural differences is however a challenging endeavour. The molecular underpinnings of natural variation in aggression remain elusive. Here, we used comparative gene expression (transcriptome analysis and RT-PCR), genetic association analysis and pharmacological experiments to gain insight into the genetic basis of aggression in wild-caught jumping spiders (Portia labiata). We show that spider aggression is associated with a putative viral infection response gene, BTB/POZ domain-containing protein 17 (BTBDH), in addition to a putative serotonin receptor 1A (5-HT1A) gene. Spider aggression varies with virus loads, and BTBDH is upregulated in docile spiders and exhibits a genetic variant associated with aggression. We also identify a putative serotonin receptor 5-HT1A gene upregulated in docile P. labiata. Individuals that have been treated with serotonin become less aggressive, but individuals treated with a nonselective serotonin receptor antagonist (methiothepin) also reduce aggression. Further, we identify the genetic variants in the 5-HT1A gene that are associated with individual variation in aggression. We therefore conclude that co-evolution of the immune and nervous systems may have shaped the between-individual variation in aggression in natural populations of jumping spiders.
    Matched MeSH terms: Polymorphism, Genetic
  14. Muhammad NAF, Kassim NFA, Ab Majid AH, Wajidi MFF, Jamsari AFJ, Dieng H, et al.
    Trop Biomed, 2018 Dec 01;35(4):1049-1063.
    PMID: 33601852
    The medically important mosquito, Aedes albopictus is native to Asia and has become a major health concern in most Asian countries including Malaysia. Being recognized as a dengue vector, a clearer understanding of how mosquito populations are geographically connected, may therefore represent a profound yet significant understanding of control strategies. There are no documented reports on the genetic structure of Ae. albopictus populations from different developed settlements inferred from microsatellite DNA markers in Malaysia, particularly in Penang Island (Northern Peninsular Malaysia). Here, we assessed the molecular population genetics of Ae. albopictus in terms of their allelic variation, genetic diversity and population structure. A total of 42 mosquitoes were sampled from Jelutong, Batu Maung and Balik Pulau which represented urban, suburban and rural areas in Penang Island respectively and analysed for polymorphism at six microsatellite loci. All of the microsatellite markers were successfully amplified and were polymorphic, showing low genetic structure among geographic populations (FST= 0.0362). It is supported with admixture individuals observed in STRUCTURE and FCA and this suggests that high gene flow has been experienced between populations. These findings implicate passive dispersal through human-aided transportation; as a factor shaping the genetic structure of Ae. albopictus populations in Penang Island.
    Matched MeSH terms: Polymorphism, Genetic
  15. Rodrigues, K. F., Yeoh, K. A., Kumar, S. V.
    MyJurnal
    Geographically isolated populations of endemic orchids have evolved and adapted to an existence within specifi c ecological niches. These populations are highly susceptible to anthropogenic
    infl uences on their microhabitats. The primary objective of conservation programs is the restoration of endangered populations to their ecologically sustainable levels, and the fi rst stage in the process of conservation involves estimation of molecular diversity at the level of the population. The approach described in this article involves the application of RAPD, Microsatellites and Chloroplast DNA markers for the characterization of the genetic structure of Paphiopedilum rothschildianum and Phalaenopsis gigantea, two endangered and endemic orchids of Sabah. This study has isolated a total of 96 microsatellite loci in P. rothschildianum and P. gigantea, 42 specifi c primer pairs have been designed for amplifi cation of microsatellite loci and are currently being applied to screen the breeding pools. The Chloroplast DNA regions amplifi ed by the primer pairs trnH-psbA and trnL-trnF exhibit distinct polymorphisms and can be used to establish phylogenetic
    relationships. The ability of microsatellite loci to cross-amplify selected varieties of orchids has been determined. The molecular markers developed will be applied to estimate population diversity
    levels and to formulate long-term management strategies for the conservation of endangered species of orchids of Sabah.
    Matched MeSH terms: Polymorphism, Genetic
  16. Tan, Soon Guan
    MyJurnal
    In various biological studies, for example those in population genetics, conservation biology, forensic science, gene mapping, breed, strain and population characterization and identification, marker assisted selection and the identification of cryptic species complexes, codominant genetic markers play important roles. The information that can be gained from them are far superior than those from dominant markers like random amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), direct amplification of length polymorphisms (DALP) and randomly amplified microsatellites (RAM) or inter simple sequence repeats (ISSR).
    Matched MeSH terms: Polymorphism, Genetic
  17. Veeramuthu, Vigneswaran, Pancharatnam, Devaraj, Poovindran, Anada Raj, Nur Atikah Mustapha, Wong, Kum Thong, Mazlina Mazlan, et al.
    Neurology Asia, 2014;19(1):69-77.
    MyJurnal
    The complex pathophysiology of traumatic brain injury, its cascading effects and a varied outcome suggest that factors such as genetics may permeate and modulate the neurocognitive outcomes in patients with mild traumatic brain injury (mTBI). This study was conducted to determine the relationship between genetic polymorphism of apolipoprotein E, and neurocognitive and functional outcomes in mTBI. Twenty-one patients with mTBI were recruited prospectively. The severity of the injury was established with the Glasgow Coma Score (GCS). Other assessments included the CT Scan of the head on admission, Disability Rating Scale, Chessington Occupational Therapy Neurological Assessment (COTNAB) and Glasgow Outcome Scale (GOS). The Spearmen correlation analysis of ApoE allele status and the cognitive and functional assessments saw some association with the Sensory Motor Ability - Coordination (-0.526, p
    Matched MeSH terms: Polymorphism, Genetic
  18. Yan P, Eng OC, Yu CJ
    Curr Drug Metab, 2018;19(11):917-929.
    PMID: 29804525 DOI: 10.2174/1389200219666180528090237
    BACKGROUND: Cytochrome P450 2S1 (CYP2S1) is one of the 'orphan' CYPs, which is expressed primarily among extra-hepatic tissues and it is inducible by dioxin. Although the contribution of extra-hepatic CYPs in drug metabolism is considered less significant, they play more important roles in leading to in situ toxicity in organs with higher expression.

    METHOD: A non-systemic search was performed to review articles relevant to CYP2S1 in literature. This review will update the findings related to the expression and regulation of CYP2S1 gene and protein, substrate profiles and metabolism mechanisms, genetic polymorphisms, and their association with diseases.

    RESULTS: The expression of CYP2S1 was mainly in the epithelium of portal of entry organs such as respiratory and gastrointestinal tract. Aryl Hydrocarbon Receptor (AHR) is believed to be partly involved in the induction of CYP2S1. CYP2S1 was found to activate and deactivate pro-drugs which resulted in toxicity and detoxification of carcinogens. The current knowledge of the endogenous functions of CYP2S1 is largely related to cell proliferation and lipid metabolisms. Several polymorphic alleles of CYP2S1 have been reported and documented to date.

    CONCLUSION: Molecular-based investigations should be performed to better understand the regulation mechanism of CYP2S1 in various cells and tissues. It is pivotal to establish optimum expression and incubation systems in vitro to elucidate the substrate specificity of CYP2S1 and characterise the genetic consequences of variant CYP2S1 in vitro.

    Matched MeSH terms: Polymorphism, Genetic
  19. Samiei G, Yip WK, Leong PP, Jabar MF, Dusa NM, Mohtarrudin N, et al.
    J Cancer Res Ther, 2018 Jun;14(Supplement):S299-S305.
    PMID: 29970680 DOI: 10.4103/0973-1482.235345
    Background: Interleukin (IL)-17A and IL-17F are inflammatory cytokines mainly produced by T helper 17 cells. IL-17A is known to be protumorigenic while IL-17F has a protective role in cancer. A number of studies have been conducted to determine the association between polymorphisms of IL-17AG197A (rs2275913) and IL-17FA7488G (rs763780) and risk of cancers. No studies have yet to be conducted to genotype the IL-17AG197A polymorphism in colorectal cancer (CRC).

    Objective: To assess the association of IL-17AG197A and IL-17FA7488G polymorphisms with CRC risk.

    Materials and Methods: We performed the genotyping by polymerase chain reaction-restriction fragment length polymorphism method on blood samples from 80 healthy individuals and paraffin-embedded tumor tissues from 70 CRC patients.

    Results: Our study showed that IL-17A197AA genotype was significantly associated with an increased CRC risk with odds ratios of 6.08 (95% confidence interval [CI]: 2.25-16.42, P < 0.001) and 2.80 (95% CI: 1.23-6.35, P = 0.014), in comparison with GG and AG genotypes, respectively. However, IL-17FA7488G polymorphism was not significantly associated with CRC risk (P = 0.102). No significant association of IL-17AG197A and IL-17FA7488G polymorphisms with patient and tumor variables was found.

    Conclusion: This report from Malaysia shows the relationship of IL-17A197AA genotype with susceptibility to CRC.

    Matched MeSH terms: Polymorphism, Genetic
  20. Pramudji H, Demes CM, Dewi K, Tasmini T, Ahmad HS
    Med J Malaysia, 2019 Oct;74(5):400-404.
    PMID: 31649216
    BACKGROUND: Interleukin-6 (IL-6) and C-Reactive Protein (CRP) are mediators of inflammatory responses and increase in people who are obese . The increase of IL-6 and CRP levels is modified by polymorphism of -174 G>C IL-6 gene.

    AIM: The purpose of this study was to investigate the relationship between -174 G>C IL-6 polymorphism gene on the level of IL-6 and CRP in the population of western Indonesia obese who are obese.

    METHODS: In this study, we examined 178 subjects consisting of 89 who are obese with BMI> 25, and controls with BMI between 18.5 and 23. Fasting blood was taken from each subject for the examination of IL-6 and CRP levels by the ELISA method. Determination of genotype -174 G>C IL-6 gene was examined by Polymerase Chain reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) methods.

    RESULTS: The results of this study showed increased levels of IL-6 and CRP in the obese group compared to the controls. In the obese group, CC genotype had higher CRP and lower IL-6 levels than the GC and GG genotypes. The frequency of CC genotype in the obese group was 47.2% compared with 28.1% in controls and this genotype was considered a risk factor for obesity. Carriers of the C genotype as a dominant or a recessive model had greater risk of obesity.

    CONCLUSION: It was concluded that the polymorphism - 174G>C IL-6 gene is a risk factor for obesity and is associated with increased levels of IL-6 and CRP in an obese group of the Western Indonesian ethnic population.

    Matched MeSH terms: Polymorphism, Genetic
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links