Displaying publications 141 - 160 of 680 in total

Abstract:
Sort:
  1. Yuen KH, Peh KK
    J Chromatogr B Biomed Sci Appl, 1998 Sep 18;715(2):436-40.
    PMID: 9792531
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5-8000 ng/ml.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  2. Mansor SM, Navaratnam V, Yahaya N, Nair NK, Wernsdorfer WH, Degen PH
    J Chromatogr B Biomed Appl, 1996 Jul 12;682(2):321-5.
    PMID: 8844426
    A rapid and selective high-performance liquid chromatographic assay for determination of a new antimalarial drug (benflumetol, BFL) is described. After extraction with hexane-diethyl ether (70:30, v/v) from plasma, BFL was analysed using a C18 Partisil 10 ODS-3 reversed-phase stainless steel column and a mobile phase of acetonitrile-0.1 M ammonium acetate (90:10, v/v) adjusted to pH 4.9 with ultraviolet detection at 335 nm. The mean recovery of BFL over a concentration range of 50-400 ng/ml was 96.8 +/- 5.2%. The within-day and day-to-day coefficients of variation were 1.8-4.0 and 1.8-4.2%, respectively. The minimum detectable concentration in plasma for BFL was 5 ng/ml with a C.V. of less than 10%. This method was found to be suitable for clinical pharmacokinetic studies.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  3. Kawai M, Nagao N, Kawasaki N, Imai A, Toda T
    J Environ Manage, 2016 Oct 01;181:838-846.
    PMID: 27449962 DOI: 10.1016/j.jenvman.2016.06.057
    The recalcitrant landfill leachate was anaerobically digested at various mixing ratios with labile synthetic wastewater to evaluate the degradation properties of recalcitrant wastewater. The proportion of leachate to the digestion system was increased in three equal steps, starting from 0% to 100%, and later decreased back to 0% with the same steps. The chemical oxygen demand (COD) for organic carbon and other components were calculated by analyzing the COD and dissolved organic carbon (DOC), and the removal efficiencies of COD carbon and COD others were evaluated separately. The degradation properties of COD carbon and COD others shifted owing to changing of substrate degradability, and the removal efficiencies of COD carbon and COD others were improved after supplying 100% recalcitrant wastewater. The UV absorptive property and total organic carbon (TOC) of each molecular size using high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with UVA and TOC detectors were also investigated, and the degradability of different molecular sizes was determined. Although the SEC system detected extracellular polymeric substances (EPS), which are produced by microbes in stressful environments, during early stages of the experiment, EPS were not detected after feeding 100% recalcitrant wastewater. These results suggest that the microbes had acclimatized to the recalcitrant wastewater degradation. The high removal rates of both COD carbon and COD others were sustained when the proportion of labile wastewater in the substrate was 33%, indicating that the effective removal of recalcitrant COD might be controlled by changing the substrate's degradability.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  4. Ng NT, Sanagi MM, Wan Ibrahim WN, Wan Ibrahim WA
    Food Chem, 2017 May 01;222:28-34.
    PMID: 28041555 DOI: 10.1016/j.foodchem.2016.11.147
    Agarose-chitosan-immobilized octadecylsilyl-silica (C18) film micro-solid phase extraction (μSPE) was developed and applied for the determination of phenanthrene (PHE) and pyrene (PYR) in chrysanthemum tea samples using high performance liquid chromatography-ultraviolet detection (HPLC-UV). The film of blended agarose and chitosan allows good dispersion of C18, prevents the leaching of C18 during application and enhances the film mechanical stability. Important μSPE parameters were optimized including amount of sorbent loading, extraction time, desorption solvent and desorption time. The matrix match calibration curves showed good linearity (r⩾0.994) over a concentration range of 1-500ppb. Under the optimized conditions, the proposed method showed good limits of detection (0.549-0.673ppb), good analyte recoveries (100.8-105.99%) and good reproducibilities (RSDs⩽13.53%, n=3) with preconcentration factors of 4 and 72 for PHE and PYR, respectively.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  5. Shalash M, Makahleh A, Salhimi SM, Saad B
    Talanta, 2017 Nov 01;174:428-435.
    PMID: 28738603 DOI: 10.1016/j.talanta.2017.06.039
    A vortex-assisted liquid-liquid-liquid microextraction method followed by high performance liquid chromatography-diode array detection for the determination of fourteen phenolic acids (cinnamic, m-coumaric, chlorogenic, syringic, ferulic, o-coumaric, p-coumaric, vanillic, p-hydroxybenzoic, caffeic, 2, 4-dihydroxybenzoic, sinapic, gentisic and gallic acids) in honey, iced tea and canned coffee drink samples has been developed. The separation was achieved using a Poroshell 120-EC-C18 column under a gradient elution at a flow rate of 0.6mLmin-1 and mobile phase composed of methanol and acetic acid (1%, v/v). Under the optimum chromatographic conditions, the fourteen phenolic acids were separated in less than 32min. The extraction was performed using a small volume (400µL) of ternary organic solvents (1-pentanol, propyl acetate and 1-hexanol) dispersed into the aqueous sample (10mL) and assisted by vortex agitation (2500rpm for 45s), the analytes were next back-extracted from the organic solvent using 0.02M KOH (40µL) with vortex speed and time of 2500rpm and 60s, respectively. Under these conditions, enrichment factors of 30-193-fold were achieved. The limits of detection (LODs) were 0.05-0.68µgL-1. Recoveries in honey, iced tea and canned coffee drinks were in the range 72.2-112%. The method was successfully applied for the determination of the phenolic acids in honey, iced tea and canned coffee drinks.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  6. Zhao L, Yu M, Sun M, Xue X, Wang T, Cao W, et al.
    Molecules, 2017 Nov 10;22(11).
    PMID: 29125569 DOI: 10.3390/molecules22111935
    A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP) produced by Malaysian stingless bees-Heterotrigona itama-by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC) and identified by nuclear magnetic resonance (NMR) as 24(E)-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  7. Alshishani A, Makahleh A, Yap HF, Gubartallah EA, Salhimi SM, Saad B
    Talanta, 2016 Dec 01;161:398-404.
    PMID: 27769423 DOI: 10.1016/j.talanta.2016.08.067
    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r2>0.99 over the range of 20-2000µgL-1. The limits of detection and quantitation were 1.4 and 4.1µgL-1, respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  8. Liew KB, Peh KK
    Pak J Pharm Sci, 2018 Nov;31(6):2515-2522.
    PMID: 30473526
    A stability-indicating HPLC-UV method for the simultaneous determination of sildenafil citrate and dapoxetine hydrochloride in solution and tablet was developed. The mobile phase was comprised of acetonitrile and 0.2M ammonium acetate buffer. The analyte was eluted at 3.392min and 7.255min for sildenafil citrate and dapoxetine HCl respectively using gradient system at a flow rate of 1.5mL/min. The theoretical plates count was>2000, tailing factor
    Matched MeSH terms: Chromatography, High Pressure Liquid*
  9. Bzour M, Zuki FM, Mispan MS, Jodeh S, Abdel-Latif M
    Bull Environ Contam Toxicol, 2019 Aug;103(2):348-353.
    PMID: 31069403 DOI: 10.1007/s00128-019-02625-x
    The residual activity of herbicides may be detrimental to the environment, requiring analysis of the persistent residues in the soil and water. A field study was conducted to measure the residues of Imidazolinone (IMI) in three Clearfield® rice field soils at three different locations in Malaysia. The analyses of IMI in the soil samples were carried out using a high-performance liquid chromatography (HPLC). These herbicides are widely used; however, few studies have been conducted on both residues, especially in the context of Malaysian soil. Residues of imazapic and imazapyr were found to fall within 0.03-0.58 µg/mL and 0.03-1.96 µg/mL, respectively, in three locations. IMI herbicides are persistent in the soil, and their residues remain for up to 85 days after application. A pre-harvest study was suggested for these herbicides on water, which will provide a clearer indicator on the use of IMI in Clearfield® rice fields.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  10. Thevarajah M, Nadzimah MN, Chew YY
    Clin Biochem, 2009 Mar;42(4-5):430-4.
    PMID: 19026622 DOI: 10.1016/j.clinbiochem.2008.10.015
    Glycated hemoglobin, measured as HbA1c is used as an index of mean glycemia in diabetic patients over the preceding 2-3 months. Various assay methods are used to measure HbA1c and many factors may interfere with its measurement according to assay method used, causing falsely high or low results.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  11. Saleem H, Sarfraz M, Khan KM, Anwar MA, Zengin G, Ahmad I, et al.
    Drug Dev Ind Pharm, 2020 May;46(5):861-868.
    PMID: 32352878 DOI: 10.1080/03639045.2020.1762199
    The biological, chemical, and in silico properties of methanol and dichloromethane (DCM) extracts of Alhagi maurorum roots with respect to the antioxidant, enzyme inhibition, and phytochemical composition were evaluated. Total bioactive contents were determined spectrophotometrically, and the individual secondary metabolites composition was assessed via ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) analysis. Antioxidant capacities were evaluated using a panoply of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging, ferric reducing antioxidant power (FRAP), cupric reducing antioxidant power (CUPRAC), phosphomolybdenum total antioxidant capacity (TAC), and metal chelating activity (MCA)). The enzyme inhibition potential was studied against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, tyrosinase, urease and lipoxygenase (LOX) enzymes. The methanol extract was found to contain higher total phenolic (105.91 mg GAE/g extract) and flavonoid (2.27 mg RE/g extract) contents which can be correlated to its more substantial antioxidant potential as well as AChE, BChE, tyrosinase and α-glucosidase inhibition. However, the DCM extract was the most effective against α-amylase (1.86 mmol ACAE/g extract) enzyme inhibition. The UHPLC-MS analysis of methanol extract identified the tentative presence of a total of 18 secondary metabolites, including flavonoids, saponins, phenolic and terpenoid derivatives. Three compounds named emmotin A, luteolin 5,3'-dimethyl ether, and preferrugone were further investigated for their in silico molecular docking studies against the tested enzymes. The selected compounds were found to have higher binding interaction with AChE followed by BChE, α-glucosidase, α-amylase, and tyrosinase. The results of the present study have demonstrated A. mauroram to be considered as a lead source of natural antioxidant and enzyme inhibitor compounds.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  12. Chan KL, Yuen KH, Jinadasa S, Peh KK, Toh WT
    Planta Med, 1997 Feb;63(1):66-9.
    PMID: 9063097
    A high-performance liquid chromatography assay equipped with a glassy carbon electrode for electrochemical detection (HPLC-ECD) was developed at reductive mode for the analysis of artemisinin, the antimalarial drug from Artemisia annua (Asteraceae) in human plasma. This method was selective, sensitive, and produced satisfactory recovery, precision, and accuracy. Analysis of plasma samples from 8 male volunteers given 10 mg kg-1 of artemisinin orally as an aqueous suspension showed a mean peak plasma concentration (Cmax) of 580.89 ng ml-1 +/- 88.64 SD at 2.5 h +/- 0.5 SD after dosing, and the mean area under the plasma concentration-time curve (AUC0-infinity) was 2227.57 ng h ml-1 +/- 677.22 SD. In addition, the elimination rate constant (Ke), elimination half-life (t1/2), and apparent volume of distribution (Vd) were calculated to be 0.2971 h-1 +/- 0.0644 SD, 2.42 h +/- 0.46 SD, and 16.26 l kg-1 +/- 3.44 SD, respectively.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  13. Chin SF, Osman J, Jamal R
    Clin Chim Acta, 2018 Oct;485:60-66.
    PMID: 29935177 DOI: 10.1016/j.cca.2018.06.024
    A simple and economical method has been developed for simultaneous determination of human serum 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3) using Ultra Performance Liquid Chromatography (UPLC). Non-human matrix of 4% BSA was used to construct the calibration curve and in quality control samples' preparation to avoid interference of the endogenous 25-hydroxyvitamin D (25OHD) present in the human serum. 25OHD2, 25OHD3 and dodecanophenone (internal standard, IS) were separated on a CORTECS solid-core particle column and monitored by photodiode array detector at wavelength of 265 nm within five min run time. The relationship between 25OHD concentration and peak area ratio (25OHD:IS) was linear over the range of 12.5 - 200 nM with mean correlation coefficients (r2) >0.998. The limit of detection (LOD) for 25OHD2 and 25OHD3 was 3.00 nM and 3.79 nM, while the lower limit of quantification (LLOQ) was 9.11 nM and 11.48 nM, respectively. High repeatability was obtained for both isomers with intra-day CV% <5.6% and <5.3% for inter-day assay. This method was further tested with a commercial lyophilized serum control with an accuracy of 92.87-108.31% and applied on 214 human serum samples. In summary, this validated method with BSA can be reliably applied for routine quantification of 25OHD in adults.
    Matched MeSH terms: Chromatography, High Pressure Liquid/economics
  14. Fong CB, Thong MK, Sam CK, Mohamed Noor MN, Ariffin R
    Singapore Med J, 2009 May;50(5):529-33.
    PMID: 19495527
    Rett syndrome (RS) is a severe neurodevelopmental disorder characterised by normal neurological development followed by progressive developmental regression. The X-linked dominant inheritance of RS has been mapped to the gene that encodes the methyl-CpG-binding protein-2 (MECP2) at Xq28. In the present study, denaturing high-performance liquid chromatography (DHPLC) was used to detect mutations in the MECP2 gene in 20 Malaysian RS patients.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  15. Abubakar BM, Salleh FM, Shamsir Omar MS, Wagiran A
    Pharm Biol, 2018 Dec;56(1):368-377.
    PMID: 30058427 DOI: 10.1080/13880209.2018.1479869
    CONTEXT: Eurycoma longifolia Jack (Simaroubaceae) commonly known as Tongkat Ali is one of the most important plants in Malaysia. The plant extracts (particularly roots) are widely used for the treatment of cough and fever besides having antimalarial, antidiabetic, anticancer and aphrodisiac activities.

    OBJECTIVES: This study assesses the extent of adulteration of E. longifolia herbal medicinal products (HMPs) using DNA barcoding validated by HPLC analysis.

    MATERIALS AND METHODS: Chloroplastic rbcL and nuclear ITS2 barcode regions were used in the present study. The sequences generated from E. longifolia HMPs were compared to sequences in the GenBank using MEGABLAST to verify their taxonomic identity. These results were verified by neighbor-joining tree analysis in which branches of unknown specimen are compared to the reference sequences established from this study and other retrieved from the GenBank. The HMPs were also analysed using HPLC analysis for the presence of eurycomanone bioactive marker.

    RESULTS: Identification using DNA barcoding revealed that 37% of the tested HMPs were authentic while 27% were adulterated with the ITS2 barcode region proven to be the ideal marker. The validation of the authenticity using HPLC analysis showed a situation in which a species which was identified as authentic was found not to contain the expected chemical compound.

    DISCUSSION AND CONCLUSIONS: DNA barcoding should be used as the first screening step for testing of HMPs raw materials. However, integration of DNA barcoding with HPLC analysis will help to provide detailed knowledge about the safety and efficacy of the HMPs.

    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  16. Man F, Choo CY
    PMID: 28869873 DOI: 10.1016/j.jchromb.2017.08.037
    Bruceines D and E are quassinoids from seeds of Brucea javanica (L.) Merr. exhibiting hypoglycemia effect. The crude drug is used as a traditional medicine by diabetes patients. The aim of this study is to understand the bioavailability and pharmacokinetics of both the bruceines D & E. A rapid and sensitive HPLC-MS/MS method was developed and validated for the quantification of both quassinoids, bruceines D & E in rat plasma. Both the bruceines D & E were separated with the Zorbax SBC-18 column with gradient elution and mobile phase system of acetonitrile and deionized water with 0.1% formic acid at a flow rate of 0.5mL/min. Analytes were detected in multiple reaction monitoring (MRM) mode with electrospray positive ionization. The quassinoids, namely bruceines D & E were detected with transitions of m/z 411.2→393.2 and m/z 395.2→377.2, respectively. Another quassinoid, eurycomanone was used as the internal standard with transition of m/z 409.2→391.2. The method was validated and conformed to the regulatory requirements. The validated method was applied to pharmacokinetic and bioavailability studies in rats. The pharmacokinetic study indicated both bruceine D and E were rapidly absorbed into the circulation system and reached its peak concentration at 0.54±0.34h and 0.66±0.30h, respectively. Bruceine E was eliminated slower than Bruceine D with t1/2 value almost increased two-fold compared to Bruceine D. In conclusion, a rapid, selective and sensitive HPLC-MS/MS method was developed for the simultaneous determination of both the bruceines D and E in rat plasma. Both bruceines D and E displayed poor oral bioavailability.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  17. Murugaiyah V, Chan KL
    PMID: 17261384
    A simple analytical method using HPLC with fluorescence detection was developed for the simultaneous determination of four lignans, phyllanthin (1), hypophyllanthin (2), phyltetralin (3) and niranthin (4) from Phyllanthus niruri L. in plasma. The method recorded limits of detection for 1, 2, 3 and 4 as 1.22, 6.02, 0.61 and 1.22 ng/ml, respectively, at a signal-to-noise ratio of 5:1 whereas their limits of quantification were 4.88, 24.41, 4.88 and 9.76 ng/ml, respectively, at a signal-to-noise ratio of 12:1. These values were comparable to those of other sensitive methods such as gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-MS (HPLC-MS) and HPLC-electrochemical detection (HPLC-ECD) for the analysis of plasma lignans. A further advantage over known methods was its simple protocol for sample preparation. The within-day and between-day accuracies for the analysis of the four lignans were between 87.69 and 110.07% with precision values below 10.51%. Their mean recoveries from extraction were between 91.39 and 114.67%. The method was successfully applied in the pharmacokinetic study of lignans in rats. Following intravenous administration, the lignans were eliminated slowly from the body with a mean clearance of 0.04, 0.01, 0.03 and 0.02 l/kg h and a mean half-life of 3.56, 3.87, 3.35 and 4.40 h for 1, 2, 3 and 4, respectively. Their peak plasma concentration upon oral administration was 0.18, 0.56, 0.12 and 0.62 microg/ml, respectively, after 1h. However, their absorption was incomplete with a calculated absolute oral bioavailability of 0.62, 1.52, 4.01 and 2.66% for 1, 2, 3 and 4, respectively.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  18. Wong JW, Nisar UR, Yuen KH
    PMID: 14643517
    A sensitive and selective high-performance liquid chromatographic method was developed for the determination of itraconazole and its active metabolite, hydroxyitraconazole, in human plasma. Prior to analysis, both compounds together with the internal standard were extracted from alkalinized plasma samples using a 3:2 (v/v) mixture of 2,2,4-trimethylpentane and dichloromethane. The mobile phase comprised 0.02 M potassium dihydrogen phosphate-acetonitrile (1:1, v/v) adjusted to pH 3.0. Analysis was run at flow-rate of 0.9 ml/min with excitation and emission wavelengths set at 260 and 365 nm, respectively. Itraconazole was found to adsorb on glass or plastic tubes, but could be circumvented by prior treating the tubes using 10% dichlorodimethylsilane in toluene. Moreover, rinsing the injector port with acetonitrile helped to overcome any carry-over effect. This problem was not encountered with hydroxyitraconazole. The method was sensitive with limit of quantification of 3 ng/ml for itraconazole and 6 ng/ml for hydroxyitraconazole. The calibration curve was linear over a concentration range of 2.8-720 ng/ml for itraconazole and 5.6-720 ng/ml for the hydroxy metabolite. Mean recovery value of the extraction procedure for both compounds was about 85%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 15%. Hence, the method is suitable for use in pharmacokinetic and bioavailability studies of itraconazole.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  19. Gam LH, Tham SY, Latiff A
    PMID: 12860026
    A confirmatory and quantitative HPLC-tandem mass spectrometry (MS-MS) method for human chorionic gonadotropin hormone (hCG) at concentrations as low as 5 IU/l following immunoaffinity extraction of the glycoprotein from urine was developed. The extraction method involved retention of urinary hCG in the immunoaffinity column via specific antigen-antibody interaction. A variety of eluents were then used to quantitatively elute hCG from the immunoaffinity column. Qualitative and quantitative analysis of hCG were undertaken using MS-MS by identifying the amino acid sequence of the marker peptide betaT5 obtained from hCG by tryptic digestion and the peak areas of three product ions b(6)(+), b(9)(+) and y(11)(+), respectively.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  20. Hadi H, Makahleh A, Saad B
    PMID: 22503735 DOI: 10.1016/j.jchromb.2012.03.031
    A hollow fiber liquid phase microextraction (HF-LPME) in conjunction with reversed phase HPLC-UV method was developed for the extraction and determination of trace amounts of the antidiabetic drug, mitiglinide (MIT) in biological fluids. The drug was extracted from 10 mL aqueous sample (donor phase (DP)) into an organic phase impregnated in the pores of hollow fiber, followed by the back extraction into a second aqueous solution (acceptor phase (AP)) located in the lumen of the hollow fiber. Parameters influencing the extraction efficiency including the kind of organic solvent, composition of DP and AP, extraction time, stirring rate and salt addition were investigated and optimized. Under the optimized extraction conditions, high enrichment factors (210-fold), good linearity (5-1000 ng mL(-1)) and detection limit lower than 1.38 ng mL(-1) were achieved. Recoveries of spiked samples were in the range (88.3-96.3%) and (92.0-99.3%) for urine and plasma samples, respectively. The percent relative standard deviation (n=9) for the extraction and determination of three concentration levels (100, 400 and 800 ng mL(-1)) of MIT were less than 10.6% and 13.6% for urine and plasma samples, respectively. The developed method is simple, sensitive and has been successfully applied to the analysis of MIT in biological fluids.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links