The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.
In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
The blending effects of mango seed fat (MSF), extracted using supercritical fluid, and palm stearin (PS) to formulate hard cocoa butter replacers (CBRs), were investigated. The triglycerides (TG), thermal properties and solid fat content (SFC) of the formulated blends were determined using different chromatographic and thermal techniques. All the blends had three main TGs; namely, 1,3-dipalmitoyl-2-oleoylglycerol (POP) (8.6-17.7%), 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol (POS) (12.6-19.6%), and 1,3-distearoyl-2-oleoyl-glycerol (SOS) (37.2-31.4%), with SOS being the major component. The melting peak temperatures gradually increased and shifted towards higher temperatures with PS. The crystallization onset temperatures increased, while the offset decreased with PS. The SFC did not drop to 0% at 37.5°C, which was shifted to 0% at and above 40°C for some blends. The studies revealed that CBRs could be prepared by blending MSF and PS, and they could be utilised by chocolate manufacturers in tropical countries.
Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound.
The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.
Poly(lactic acid) (PLA) is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO) was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt%) through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM) analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.
The thermal effusivity of Al(2)O(3) and CuO nanofluids in different base fluids, i.e., deionized water, ethylene glycol and olive oil were investigated. The nanofluids, nanoparticles dispersed in base fluids; were prepared by mixing Al(2)O(3), CuO nanopowder and the base fluids using sonication with high-powered pulses to ensure a good uniform dispersion of nanoparticles in the base fluids. The morphology of the particles in the base fluids was investigated by transmission electron microscopy (TEM). In this study, a phase frequency scan of the front pyroelectric configuration technique, with a thermally thick PVDF pyroelectric sensor and sample, was used to measure the thermal effusivity of the prepared nanofluids. The experimental results of the thermal effusivity of the studied solvents (deionized water, ethylene glycol and olive oil) showed good agreement with literature values, and were reduced in the presence of nanoparticles. The thermal effusivity of the nanofluid was found to be particularly sensitive to its base fluid and the type of nanoparticles.
Candlenut oil was extracted using supercritical CO(2) (SC-CO(2)) with an optimization of parameters, by the response surface methodology. The ground candlenut samples were treated in 2 different ways, that is, dried in either a heat oven (sample moisture content of 2.91%) or dried in a vacuum oven (sample moisture content of 1.98%), before extraction. An untreated sample (moisture content of 4.87%) was used as a control. The maximum percentage of oil was extracted from the heat-oven-dried sample (77.27%), followed by the vacuum-oven-dried sample (74.32%), and the untreated sample (70.12%). At an SC-CO(2) pressure of 48.26 Mpa and 60 min of extraction time, the optimal temperatures for extraction were found to be 76.4 °C, 73.9 °C, and 70.6 °C for the untreated, heat-oven-dried, and vacuum-oven-dried samples, respectively. The heat-oven-dried sample contains the highest percentage of linoleic acid, followed by the untreated and vacuum-oven-dried samples. The antiradical activity of candlenut oil corresponded to an IC(50) value of 30.37 mg/mL.
Volatile compounds play a key role in determining the sensory appreciation of vegetable oils. In this study a systematic evaluation of odorants responsible for the characteristic flavour of roasted tigernut oil was carried out.
An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.
In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in T(g), which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO's, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.
Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).
Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.
The palm oil industry generates several byproducts, and more than half of the dry weight of the waste is of oil palm leaf whereby the tissue is underutilized. Recently, several research studies found promising potential of oil palm fronds as a source of nutraceutical due to its bioactive properties. However, the chemical composition of the tissue is still not deciphered. Using reversed-phase liquid chromatography (LC) electrospray mass spectrometry (ESI-MS), glycosylated apigenin and luteolin were separated and identified from oil palm (Elaeis guineensis Jacq.) leaf and structures of the constituents were elucidated by collision-induced dissociation (CID) tandem MS. From 28 derivatives of the flavones, 9 compounds were conjugated with hydroxymethylglutaric (HMG) acid. Improved knowledge on oil palm especially on bioactive component of the leaf tissue will allow correlation of its beneficial effects and further promotes efficient utilization of this agriculture byproduct.
The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.
This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
Analyses of tocols (tocopherols and tocotrienols) in palm oil have been extensively reported in the past. However, due to the scarcity of individual tocotrienol standards, calibrations have mostly been carried out using only α-tocopherol as standard. Moreover, even if the individual tocotrienols are being used, their reliability is often questioned, because tocotrienols are highly susceptible to oxidation and deterioration. This paper reports on the study of the deterioration rate of individual tocotrienol standards upon storage as well as different calibration methods for the tocols in palm oil.