In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer's disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.
Four series of thirteen new coumarin-chalcone hybrids (DPCU 1-13, DPCT 1-13, DCCU 1-13 and DCCT 1-13) were designed and synthesized using Biginelli synthesis, Pechmann condensation, Acetylation, and Claisen-Schmidt reactions. Synthesized compounds were tested for insulin receptor in silico docking studies (PDB ID: 1IR3); DCCU 13 and DCCT 13 derivatives received the lowest docking score; Streptozocin (STZ) and Nicotinamide (NA) induced type II diabetes was tested for their anti-diabetic activity in rats. In vivo tests suggested that fasting blood glucose levels of animals treated with DCCU 13 (30 mg/kg body weight) and DCCT 13 (30 mg/kg body weight) were significantly and moderately suppressed, respectively, relative to fasting blood glucose levels of diabetic control animals. Similarly, therapy with DCCU 13 and DCCT 13 attenuated oxidative stress parameters such as lipid peroxidation (MDA), superoxide dismutase (SOD) and increased the glutathione (GSH) in the liver and pancreas in a dose-dependent manner. In comparison, therapy with DCCU 13 (30 mg/kg body weight) mitigated alterations in the histological architecture of the liver and pancreatic tissue. These results indicated that the hybrids DUUC 13 and DCCT 13 at 30 mg/kg had an anti-hyperglycemic and antioxidant impact on STZ + NA mediated type II diabetes in rats. Further detailed work could be required to determine the precise mode of action of the anti-diabetic behavior of hybrids.
Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11μmol/L.
Previously, a hypothetical protein (HP) termed Bleg1_2437 (currently named Bleg1_2478) from Bacillus lehensis G1 was discovered to be an evolutionary divergent B3 subclass metallo-β-lactamase (MBL). Due to the scarcity of clinical inhibitors for B3 MBLs and the divergent nature of Bleg1_2478, this study aimed to design and characterise peptides as inhibitors against Bleg1_2478. Through in silico docking, RSWPWH and SSWWDR peptides with comparable binding energy to ampicillin were obtained. In vitro assay results showed RSWPWH and SSWWDR inhibited the activity of Bleg1_2478 by 50% at concentrations as low as 0.90 µM and 0.50 µM, respectively. At 10 µM of RSWPWH and 20 µM of SSWWDR, the activity of Bleg1_2478 was almost completely inhibited. Isothermal titration calorimetry (ITC) analyses showed slightly improved binding properties of the peptides compared to ampicillin. Docked peptide-protein complexes revealed that RSWPWH bound near the vicinity of the Bleg1_2478 active site while SSWWDR bound at the center of the active site itself. We postulate that the peptides caused the inhibition of Bleg1_2478 by reducing or blocking the accessibility of its active site from ampicillin, thus hampering its catalytic function.
Psoriasis is a chronic autoimmune skin disorder affecting 2-3% of the world population. It has characteristic features such as increased keratinocyte proliferation and production of inflammatory mediators. The treatment involves various strategies including topical, systemic, phototherapy and biologics. Topical therapies are preferred for mild to moderate psoriasis conditions over the systemic therapies which are ideal in severe disease conditions. The systemic therapies include immunosuppressants, biological agents and recently approved phosphodiesterase-4 (PDE4) inhibitors. There are various limitations associated with the existing therapies where the new findings in the pathogenesis of psoriasis are paving a path for newer therapeutics to target at the molecular level. Various small molecules, PDE-4 inhibitors, biologics, and immunomodulator proved efficacious including the new molecules targeting Janus kinases (JAK) inhibitors that are under investigation. Furthermore, the role of genetic and miRNAs in psoriasis is still not completely explored and may further help in improving the treatment efficacy. This review provides an insight into various emerging therapies along with currently approved treatments for psoriasis.
The homeostatic role of adenosine in regulating intraocular pressure (IOP) is now widely recognized, and hence, the drugs targeting adenosine receptors have become the focus of investigation. In this review, we summarize the adenosine receptor signaling pathways, which could be potential therapeutic targets for the management of glaucoma.