Materials and methods: QOS collagen nanofibers were electrospun by incorporating various concentrations of QOS (0.1%-10% w/w) and were cross-linked in situ after exposure to ammonium carbonate. The QOS cross-linked scaffolds were characterized and their biological properties were evaluated in terms of their biocompatibility, cellular adhesion and metabolic activity for primary human dermal fibroblasts and human fetal osteoblasts.
Results and discussion: The study revealed that 1) QOS cross-linking increased the flexibility of otherwise rigid collagen nanofibers and improved the thermal stability; 2) QOS cross-linked mats displayed potent antibacterial activity and 3) the biocompatibility of the composite mats depended on the amount of QOS present in dope solution - at low QOS concentrations (0.1% w/w), the mats promoted mammalian cell proliferation and growth, whereas at higher QOS concentrations, cytotoxic effect was observed.
Conclusion: This study demonstrates that QOS cross-linked mats possess anti-infective properties and confer niches for cellular growth and proliferation, thus offering a useful approach, which is important for hard and soft tissue engineering and regenerative medicine.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.