Displaying publications 121 - 140 of 253 in total

Abstract:
Sort:
  1. Chew YL, Mahadi AM, Wong KM, Goh JK
    BMC Complement Altern Med, 2018 Feb 20;18(1):70.
    PMID: 29463252 DOI: 10.1186/s12906-018-2137-5
    BACKGROUND: Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity.

    METHODS: Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated.

    RESULTS: B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds.

    CONCLUSION: Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  2. Hussain RM, Abdullah NF, Amom Z
    J Integr Med, 2016 Nov;14(6):456-464.
    PMID: 27854197 DOI: 10.1016/S2095-4964(16)60279-0
    OBJECTIVE: This study investigated the effects of allylpyrocatechol (APC), the major component in ethanolic extract of Piper betle, on key oxidative stress resistance enzymes important for the survival of Staphylococcus aureus, a major pathogen in the human host.

    METHODS: Effects of APC on expressions of genes encoding catalase (katA), superoxide dismutases (SODs), including sodA and sodM, and alkyl hydroperoxide reductase (ahpC) in S· aureus were quantitated by RT-qPCR in reference to gyrA and 16S rRNA. Corresponding activities of the enzymes were also investigated. The Livak analysis was performed for verification of gene-fold expression data. Effects of APC on intracellular and extracellular reactive oxygen species (ROS) levels were determined using the nitroblue tetrazolium (NBT) reduction assay.

    RESULTS: APC-treated S· aureus cells had higher sodA and sodM transcripts at 1.5-fold and 0.7-fold expressions respectively with corresponding increase in total SOD activity of 12.24 U/mL compared to untreated cells, 10.85 U/mL (P<0.05). Expression of ahpC was highest in APC-treated cells with 5.5-fold increased expression compared to untreated cells (P<0.05). Correspondingly, ahpC activity was higher in APC-treated cells at 0.672 (A310nm) compared to untreated cells which was 0.394 (A310nm). In contrast, katA expression was 1.48-fold and 0.33-fold lower respectively relative to gyrA and 16S rRNA. Further, APC-treated cells showed decreased catalase activity of 1.8 ×10-4 (U/L or μmol/(min·L)) compared to untreated cells, which was 4.8 ×10-4 U/L (P<0.05). Absorbance readings (A575nm) for the NBT reduction assay were 0.709 and 0.695 respectively for untreated and treated cells, which indicated the presence of ROS. APC-treated S· aureus cells had lower ROS levels both extracellularly and intracellularly, but larger amounts remained intracellularly compared to extracellular levels with absorbances of 0.457 and 0.137 respectively (P<0.05).

    CONCLUSION: APC induced expressions of both sodA and sodM, resulting in increased total SOD activity in S· aureus. Higher sodA expression indicated stress induced intracellularly involving O2- , presumably leading to higher intracellular pools of H2O2. A concommittant decrease in katA expression and catalase activity possibly induced ahpC expression, which was increased the highest in APC-treated cells. Our findings suggest that in the absence of catalase, cells are propelled to seek an alternate pathway involving ahpC to reduce stress invoked by O2- and H2O2. Although APC reduced levels of ROS, significant amounts eluded its antioxidative action and remained intracellularly, which adds to oxidative stress in treated cells.

    Matched MeSH terms: Staphylococcus aureus/drug effects*
  3. David SR, Malek N, Mahadi AH, Chakravarthi S, Rajabalaya R
    Drug Des Devel Ther, 2018;12:481-494.
    PMID: 29563773 DOI: 10.2147/DDDT.S146549
    Background: Peritonitis is the most serious complication of peritoneal dialysis. Staphylococcus aureus infections could lead to peritonitis which causes reversal of peritoneal dialysis treatment back to hemodialysis. The aim of this study was to develop a controlled release silicone adhesive-based mupirocin patch for prophylactic effect and analyze its antibacterial effectiveness against S. aureus.

    Methods: The matrix patches were prepared by using different polymers, with and without silicone adhesive, dibutyl sebacate and mupirocin. The patches were characterized for mechanical properties, drug content, moisture content, water absorption capacity and Fourier transform infrared spectrum. In vitro release studies were performed by using Franz diffusion cell. In vitro disk diffusion assay was performed on the Mueller-Hinton Agar plate to measure the zone of inhibition of the patches. The in vivo study was performed on four groups of rats with bacterial counts at three different time intervals, along with skin irritancy and histopathologic studies.

    Results: The patches showed appropriate average thickness (0.63-1.12 mm), tensile strength (5.08-10.08 MPa) and modulus of elasticity (21.53-42.19 MPa). The drug content ranged from 94.5% to 97.4%, while the moisture content and water absorption capacities at two relative humidities (75% and 93%) were in the range of 1.082-3.139 and 1.287-4.148 wt%, respectively. Fourier transform infrared spectra showed that there were no significant interactions between the polymer and the drug. The highest percentage of drug release at 8 hours was 47.94%. The highest zone of inhibition obtained was 28.3 mm against S. aureus. The in vivo studies showed that the bacterial colonies were fewer at 1 cm (7×101 CFU/mL) than at 2 cm (1.3×102 CFU/mL) over a 24-hour period. The patches were nonirritant to the skin, and histopathologic results also showed no toxic or damaging effects to the skin.

    Conclusion: The in vitro and in vivo studies indicated that controlled release patches reduced the migration of S. aureus on the live rat skin effectively, however, a longer duration of study is required to determine the effectiveness of the patch on a suitable peritonitis-induced animal model.

    Matched MeSH terms: Staphylococcus aureus/drug effects*
  4. Karunanidhi A, Ghaznavi-Rad E, Jeevajothi Nathan J, Joseph N, Chigurupati S, Mohd Fauzi F, et al.
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871159 DOI: 10.3390/molecules24061003
    Antibiotic resistance is a problem that continues to challenge the healthcare sector, especially in clinically significant pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Herein is described the isolation and structure elucidation of a bioactive compound from Allium stipitatum with antimicrobial activity. Crude Allium stipitatum dichloromethane extract (ASDE) was subjected to systematic purification by chromatographic procedures to afford various bioactive fractions. A fraction that exhibited anti-MRSA activity (4 µg·mL-1) was further characterized to determine the structure. The structure of the compound was elucidated as 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN). The 2-Medpy-3-CN compound, which was screened for antimicrobial activity, exhibited minimum inhibitory concentrations (MICs) in the range of 0.5 to >64 µg·mL-1 for tested bacterial species and 0.25 to 2 µg·mL-1 for Candida spp. Further studies are important to confirm the drug target and mechanism of action.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  5. Ghasemzadeh A, Jaafar HZ, Rahmat A, Ashkani S
    BMC Complement Altern Med, 2015 Sep 23;15:335.
    PMID: 26399961 DOI: 10.1186/s12906-015-0838-6
    BACKGROUND: Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties.

    METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

    RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.

    CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

    Matched MeSH terms: Staphylococcus aureus/drug effects
  6. Lim KT, Hanifah YA, Yusof M, Thong KL
    Indian J Med Microbiol, 2012 Apr-Jun;30(2):203-7.
    PMID: 22664438 DOI: 10.4103/0255-0857.96693
    The objective of this study was to determine the expression and transferability of tetracycline and erythromycin resistance among 188 MRSA strains from a Malaysian tertiary hospital. The minimum inhibitory concentrations (MICs) for oxacillin, erythromycin, tetracycline and ciprofloxacin ranged from 4 to 512 μg/ml, 0.25 to 256 μg/ml, 0.5 to 256 μg/ml and 0.5 to 512 μg/ml, respectively. Tetracycline-resistant strains showed co-resistance towards ciprofloxacin and erythromycin. There was a significant increase (P<0.05) of high-level tetracycline (≥MIC 256 μg/ml) and erythromycin (≥MIC 128 μg/ml) resistant strains in between the years 2003 and 2008. All erythromycin-resistant strains harboured ermA or ermC gene and all tetracycline-resistant strains harboured tetM or tetK gene. The blaZ was detected in all MRSA strains, whereas ermA, tetM, ermC, tetK and msrA genes were detected in 157 (84%), 92 (49%), 40 (21%), 39 (21%) and 4 (2%) MRSA strains, respectively. The blaZ, tetM, ermC and tetK genes were plasmid-encoded, with ermC gene being easily transmissible. Tn5801-like transposon was present in 78 tetM-positive strains. ermA and tetM genes were the most prevalent erythromycin and tetracycline resistance determinants, respectively, in MRSA strains. The association of resistance genes with mobile genetic elements possibly enhances the spread of resistant traits in MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  7. Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, et al.
    Bioprocess Biosyst Eng, 2024 Aug;47(8):1213-1226.
    PMID: 38509421 DOI: 10.1007/s00449-024-02995-5
    This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  8. Abdullah S, Oh YS, Kwak MK, Chong K
    J Microbiol, 2021 Feb;59(2):164-174.
    PMID: 33355891 DOI: 10.1007/s12275-021-0551-8
    There have been relatively few studies which support a link between Ganoderma boninense, a phytopathogenic fungus that is particularly cytotoxic and pathogenic to plant tissues and roots, and antimicrobial compounds. We previously observed that liquid-liquid extraction (LLE) using chloroformmethanol-water at a ratio (1:1:1) was superior at detecting antibacterial activities and significant quantities of antibacterial compounds. Herein, we demonstrate that antibacterial secondary metabolites are produced from G. boninense mycelia. Antibacterial compounds were monitored in concurrent biochemical and biophysical experiments. The combined methods included high performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The antibacterial compounds derived from mycelia with chloroform-methanol extraction through LLE were isolated via a gradient solvent elution system using HPTLC. The antibacterial activity of the isolated compounds was observed to be the most potent against Staphylococcus aureus ATCC 25923 and multidrug-resistant S. aureus NCTC 11939. GC-MS, HPLC, and FTIR analysis confirmed two antibacterial compounds, which were identified as 4,4,14α-trimethylcholestane (m/z = 414.75; lanostane, C30H54) and ergosta-5,7,22-trien-3β-ol (m/z = 396.65; ergosterol, C28H44O). With the aid of spectroscopic evaluations, ganoboninketal (m/z = 498.66, C30H42O6), which belongs to the 3,4-seco-27-norlanostane triterpene family, was additionally characterized by 2D-NMR analysis. Despite the lack of antibacterial potential exhibited by lanostane; both ergosterol and ganoboninketal displayed significant antibacterial activities against bacterial pathogens. Results provide evidence for the existence of bioactive compounds in the mycelia of the relatively unexplored phytopathogenic G. boninense, together with a robust method for estimating the corresponding potent antibacterial secondary metabolites.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  9. Neela V, Sasikumar M, Ghaznavi GR, Zamberi S, Mariana S
    PMID: 19058585
    Methicillin-resistant Staphylococcus aureus (MRSA), an established nosocomial and emerging community pathogen associated with many fatalities due to its hyper-virulence and multiple drug resistant properties, is on the continuous rise. To update the current status on the susceptibility of local MRSA isolates to various classes of antibiotics and to identify the most potent antibiotics, thirty-two clinical isolates comprised of hospital acquired (HA) and community acquired (CA) infections were investigated by disk diffusion test. Of the 32 MRSA isolates, 14 (43.75%) and 18 (56.25%) were community and hospital acquired MRSA, respectively. All isolates were multiple drug resistant to more than 3 classes of antibiotics despite the source or specimen from which it was isolated. The oxacillin MICs for all isolates ranged from 2 to > or = 256 microg/ml. Twenty-five of 26 erythromycin-resistant MRSA isolates exhibited an inducible MLS(B) resistance phenotype while one showed an MS phenotype. More than half the isolates (68.75%) were resistant to at least one of the six aminoglycosides tested, with netilmicin as the most susceptible. The most effective antistaphylococcal agents were linezolid, vancomycin, teicoplanin and quinupristin/dalfopristin exhibited 100% susceptibility. Since MRSA is under continuous pressure of acquiring multiple drug resistance, it is imperative to focus routine surveillance on HA and CA-MRSA strains to monitor and limit the spread of this organism.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  10. Abubakar U, Sulaiman SAS
    J Infect Public Health, 2018;11(6):763-770.
    PMID: 29933910 DOI: 10.1016/j.jiph.2018.05.013
    BACKGROUND: Evidence to demonstrate the prevalence and trend of Methicillin Resistant Staphylococcus aureus (MRSA) infection in Nigeria is scarce. This review evaluates the prevalence, trend and antimicrobial susceptibility of clinical MRSA isolates reported in published studies.

    METHOD: Electronic search (PubMed, Scopus and Google scholar) was conducted using the following search terms: "MRSA OR Methicillin Resistant Staphylococcus aureus AND Nigeria." Reference list of selected studies was scanned to identify more studies. Studies published between 2007 and 2017 that tested at least 30 non-duplicate S. aureus isolates were selected. An independent reviewer extracted data from the studies using a standardized form.

    RESULTS: Twelve studies were included in this review. Overall, prevalence of MRSA infection increased from 18.3% (2009) to 42.3% (2013). The prevalence of MRSA infection was less than 50% in all the regions during the period under review. There was a decline in the prevalence of MRSA infection in the North-East (from 12.5% to 8.0%) between 2007 and 2012, and an increase in the South-West (from 20.2% to 47.4%) between 2006 and 2010. Wound, blood and urine specimens had the highest proportion of MRSA isolates. Non-susceptibility of MRSA strains to cotrimoxazole and tetracycline was greater than 85%.

    CONCLUSION: Prevalence of MRSA infection in Nigeria is rising, albeit regional variations. Non-susceptibility to commonly prescribed, orally available and inexpensive antibiotics was high. Antimicrobial resistance surveillance system, infection control, and antimicrobial stewardship interventions are recommended.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  11. Aruldass CA, Marimuthu MM, Ramanathan S, Mansor SM, Murugaiyah V
    Microsc Microanal, 2013 Feb;19(1):254-60.
    PMID: 23332129 DOI: 10.1017/S1431927612013785
    Mesua ferrea is traditionally used for treating bleeding piles, fever, and renal diseases. It has been reported to have antimircobial activity. In the present study, antibacterial efficacy of leaf and fruit extracts on the growth and morphology of Staphylococcus aureus is evaluated. Both extracts display good antibacterial activity against S. aureus with a minimum inhibition concentration of 0.048 mg/mL. Both extracts are bacteriostatic at a minimum bacteriostatic concentration of 0.39 mg/mL. The bacteriostatic activity lasts for 24 h, and then cells start to grow as normal as shown in time-kill analysis. Scanning electron microscopy study indicated potential detrimental effect of the extracts of leaf and fruits of M. ferrea on the morphology of S. aureus. The treatment with the extracts caused extensive lysis of the cells, leakage of intracellular constituents, and aggregation of cytoplasmic contents forming an open meshwork of the matrix.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  12. Daniel-Jambun D, Dwiyanto J, Lim YY, Tan JBL, Muhamad A, Yap SW, et al.
    J Appl Microbiol, 2017 Oct;123(4):810-818.
    PMID: 28708293 DOI: 10.1111/jam.13536
    AIMS: To investigate the antimicrobial properties of Etlingera coccinea and Etlingera sessilanthera and to isolate and identify the antimicrobial compounds.

    METHODS AND RESULTS: Extracts were obtained via sequential solvent extraction method using hexane, dichloromethane, ethyl acetate, methanol and water. Antimicrobial activity testing was done using broth microdilution assay against 17 strains of bacteria. The leaf hexane extract of E. coccinea and rhizome hexane extract of E. sessilanthera showed best antimicrobial activities, with minimum inhibitory concentration (MIC) values ranging from 0·016 to 1 mg ml-1 against Gram-positive bacteria. From these active extracts, two antimicrobials were isolated and identified as trans-2-dodecenal and 8(17),12-labdadiene-15,16-dial with MIC values ranging from 4 to 8 μg ml-1 against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.

    CONCLUSION: Etlingera coccinea and E. sessilanthera demonstrated good antimicrobial activities against clinically relevant bacteria strains. The antimicrobial compounds isolated showed low MIC values, hence suggesting their potential use as antimicrobial agents.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to identify the potent antimicrobials from these gingers. The antimicrobials isolated could potentially be developed further for use in treatment of bacterial infections. Also, this study warrants further research into other Etlingera species in search for more antimicrobial compounds.

    Matched MeSH terms: Staphylococcus aureus/drug effects
  13. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  14. Alkotaini B, Anuar N, Kadhum AA
    Appl Biochem Biotechnol, 2015 Feb;175(4):1868-78.
    PMID: 25427593 DOI: 10.1007/s12010-014-1410-4
    The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  15. Santiago C, Lim KH, Loh HS, Ting KN
    Molecules, 2015 Mar 10;20(3):4473-82.
    PMID: 25764489 DOI: 10.3390/molecules20034473
    Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  16. Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, et al.
    Biomed Res Int, 2015;2015:823829.
    PMID: 25710030 DOI: 10.1155/2015/823829
    28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC50 values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  17. Wong CB, Khoo BY, Sasidharan S, Piyawattanametha W, Kim SH, Khemthongcharoen N, et al.
    Benef Microbes, 2015 Mar;6(1):129-39.
    PMID: 25213027 DOI: 10.3920/BM2014.0021
    Increasing levels of antibiotic resistance by Staphylococcus aureus have posed a need to search for non-antibiotic alternatives. This study aimed to assess the inhibitory effects of crude and fractionated cell-free supernatants (CFS) of locally isolated lactic acid bacteria (LAB) against a clinical strain of S. aureus. A total of 42 LAB strains were isolated and identified from fresh vegetables, fresh fruits and fermented products prior to evaluation of inhibitory activities. CFS of LAB strains exhibiting a stronger inhibitive effect against S. aureus were fractionated into crude protein, polysaccharide and lipid fractions. Crude protein fractions showed greater inhibition against S. aureus compared to polysaccharide and lipid fractions, with a more prevalent effect from Lactobacillus plantarum 8513 and L. plantarum BT8513. Crude protein, polysaccharide and lipid fractions were also characterised with glycine, mannose and oleic acid being detected as the major component of each fraction, respectively. Scanning electron microscopy revealed roughed and wrinkled membrane morphology of S. aureus upon treatment with crude protein fractions of LAB, suggesting an inhibitory effect via the destruction of cellular membrane. This research illustrated the potential application of fractionated extracts from LAB to inhibit S. aureus for use in the food and health industry.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  18. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN
    Biomed Res Int, 2014;2014:965348.
    PMID: 25101303 DOI: 10.1155/2014/965348
    The inhibitory activity of a semipure fraction from the plant, Acalypha wilkesiana assigned as 9EA-FC-B, alone and in combination with ampicillin, was studied against methicillin-resistant Staphylococcus aureus (MRSA). In addition, effects of the combination treatment on PBP2a expression were investigated. Microdilution assay was used to determine the minimal inhibitory concentrations (MIC). Synergistic effects of 9EA-FC-B with ampicillin were determined using the fractional inhibitory concentration (FIC) index and kinetic growth curve assay. Western blot experiments were carried out to study the PBP2a expression in treated MRSA cultures. The results showed a synergistic effect between ampicillin and 9EA-FC-B treatment with the lowest FIC index of 0.19 (synergism ≤ 0.5). The presence of 9EA-FC-B reduced the MIC of ampicillin from 50 to 1.56 μg mL(-1). When ampicillin and 9EA-FC-B were combined at subinhibitory level, the kinetic growth curves were suppressed. The antibacterial effect of 9EA-FC-B and ampicillin was shown to be synergistic. The synergism is due the ability of 9EA-FC-B to suppress the activity of PBP2a, thus restoring the susceptibility of MRSA to ampicillin. Corilagin was postulated to be the constituent responsible for the synergistic activity showed by 9EA-FC-B.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  19. Chew YK, Cheong JP, Ramesh N, Noorafidah MD, Brito-Mutunayagam S, Khir A, et al.
    Ear Nose Throat J, 2014 Jun;93(6):E5-8.
    PMID: 24932831
    We conducted a retrospective observational study to determine the spectrum and antibiotic sensitivity pattern of organisms isolated in otorhinolaryngologic (ORL) infections. We reviewed the laboratory culture and sensitivity records of 4,909 patients-2,773 males (56.5%) and 2,136 females (43.5%), aged 2 to 90 years (mean: 45.3 ± 12.6)-who had been seen at two government hospitals in Malaysia. Of this group, 4,332 patients had a respiratory tract infection (88.2%), 206 had an ear infection (4.2%), 188 had a deep neck infection (3.8%), and 183 had an oropharyngeal infection (3.7%). The most common isolated organisms were Klebsiella spp, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, methicillin-susceptible S aureus, coagulase-negative S aureus, and Acinetobacter baumannii. We also identified the antimicrobial susceptibility of these organisms. We conclude that since the spectrum of causative pathogens in some infections differs between tropical and nontropical areas of the world, tropical hospitals should not completely adopt the antibiotic guidelines for ORL infections that have been recommended for hospitals in nontropical regions. We hope that our review and analysis of local data will help practitioners in Malaysia develop an appropriate prescribing policy with respect to ORL pathogens and antimicrobial susceptibility. The goal is to reduce the morbidity and mortality associated with these infections.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  20. Chan EW, Gray AI, Igoli JO, Lee SM, Goh JK
    Phytochemistry, 2014 Nov;107:148-54.
    PMID: 25174555 DOI: 10.1016/j.phytochem.2014.07.028
    Galloylated flavonol rhamnosides identified as kaempferol-3-O-(2″,3″,4″-tri-O-galloyl)-α-l-rhamnopyranoside, quercetin-3-O-(3″,4″-di-O-galloyl)-α-l-rhamnopyranoside, and quercetin-3-O-(2″,3″,4″-tri-O-galloyl)-α-l-rhamnopyranoside, together with five known galloylated and non-galloylated flavonol rhamnosides, were isolated from leaves of Calliandra tergemina (L.) Benth. Their structures were established using spectroscopic methods and their antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated by a microdilution method.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links