Displaying publications 121 - 124 of 124 in total

Abstract:
Sort:
  1. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 07 05;23(7).
    PMID: 29976903 DOI: 10.3390/molecules23071646
    Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
    Matched MeSH terms: Desiccation/methods*
  2. Bujang-Safawi E, Halim AS, Khoo TL, Dorai AA
    Burns, 2010 Sep;36(6):876-82.
    PMID: 20236771 DOI: 10.1016/j.burns.2009.07.001
    Facial burns are common and have a significant impact on patient function and psychosocial well being. Human amnion has been used for many years as a temporary biological wound dressing in the management of partial thickness burns. The observed advantages of human amnion treatment include pain relief, ease of use, prevention of infection and acceleration of wound healing.
    Matched MeSH terms: Desiccation
  3. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
    Matched MeSH terms: Desiccation
  4. Chew SC, Tan CP, Nyam KL
    J Food Sci, 2018 Sep;83(9):2288-2294.
    PMID: 30074623 DOI: 10.1111/1750-3841.14291
    Kenaf seed oil is prone to undergo oxidation due to its high content of unsaturated fatty acids, thus microencapsulation stands as an alternative to protect kenaf seed oil from the adverse environment. This study primarily aimed to evaluate the oxidative stability of microencapsulated refined kenaf seed oil (MRKSO) by the use of gum arabic, β-cyclodextrin, and sodium caseinate as the wall materials by spray drying. Bulk refined kenaf seed oil (BRKSO) and MRKSO were kept at 65 °C for 24 days to evaluate its oxidative stability, changes of tocopherol and tocotrienol contents, phytosterol content, and fatty acid profile. The results showed that the peroxide value, p-Anisidine value, and total oxidation value of BRKSO were significantly higher than the MRKSO at day 24. The total tocopherol and tocotrienol contents were reduced 66.1% and 56.8% in BRKSO and MRKSO, respectively, upon the storage. There was a reduction of 71.7% and 23.5% of phytosterol content in BRKSO and MRKSO, respectively, upon the storage. The degradation rate of polyunsaturated fatty acids in BRKSO was higher than that of MRKSO. This study showed that the current microencapsulation technique is a feasible way to retard the oxidation of kenaf seed oil.

    PRACTICAL APPLICATION: There is increasing research on the functional properties of crude kenaf seed oil, but the crude kenaf seed oil is not edible. This study offered in developing of microencapsulated refined kenaf seed oil by spray drying, which is suitable for food application. The microencapsulation of refined kenaf seed oil with healthier wall materials is beneficial in developing a diversity of functional food products and supplements.

    Matched MeSH terms: Desiccation
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links