METHODS: MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR).
RESULTS: TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes.
CONCLUSION: TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.
.
METHODS: BCR-ABL positive K562 CML cells were treated with TQ. Cytotoxicity was determined by Trypan blue exclusion assay. Apoptosis assay was performed by annexin V-FITC/PI staining assay and analyzed by flow cytometry. Transcription levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein levels of JAK2 and STAT5 were determined by Jess Assay analysis.
RESULTS: TQ markedly decreased the cell proliferation and induced apoptosis in K562 cells (P < 0.001) in a concentration dependent manner. TQ caused a significant decrease in the transcriptional levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes (P < 0.001). TQ induced a significant decrease in JAK2 and STAT5 protein levels (P < 0.001).
CONCLUSION: our results indicated that TQ inhibited cell growth of K562 cells via downregulation of BCR ABL/ JAK2/STAT3 and STAT5 signaling and reducing JAK2 and STAT5 protein levels.
MATERIALS AND METHODS: A retrospective cross-sectional analysis was performed on patients who presented to our institution from April 2020 until July 2021 for acute stroke and had MRI brain as first-line neuroimaging. A total of 31 subjects were included in this study. Two radiologists assessed the signal patterns in DWI sequence and compared them with SWI and CT Brain, whenever available, as the gold standard for observing the presence of intracranial haemorrhage.
RESULTS: The majority of patients with hyperacute bleed proven to be revealed on SWI or CT, thus showed characteristics of central hyperintensity and peripheral hypointense rim, on DWI. Slightly more than half (51.6%) presented with mild to moderate NIHSS scores (1-15). The sensitivity, specificity, positive predictive value and negative predictive value of DWI in detecting intracranial intra-axial haemorrhages were exceptionally high. There is strong interobserver level of agreement in identifying central haemorrhagic signal intensity [kappa = 0.94 (0.06), p < 0.05].
CONCLUSION: This study supported the DWI sequence as a reliable sequence in MRI, to detect intracranial haemorrhage in hyperacute stroke.
METHODS: 71 patients from 18 facilities participated in the 8-week single-arm intervention study. GRVOTS mobile apps were installed in their mobile apps, and patients were expected to fulfill tasks such as providing Video Direct Observe Therapy (VDOTS) daily as well as side effect reporting. At 3-time intervals of baseline,1-month, and 2-month intervals, the number of VDOT taken, the Malaysian Medication Adherence Assessment Tool (MyMAAT), and the Intrinsic Motivation Inventory (IMI) questionnaire were collected. One-sample t-test was conducted comparing the VDOT video adherence to the standard rate of 80%. RM ANOVA was used to analyze any significant differences in MyMAAT and IMI scores across three-time intervals.
RESULTS: This study involved 71 numbers of patients from 18 healthcare facilities who showed a significantly higher treatment adherence score of 90.87% than a standard score of 80% with a mean difference of 10.87(95% CI: 7.29,14.46; p
METHODS: In this study, we performed a hybrid assembly of 454 and Illumina sequencing reads from Polygonum minus root and leaf tissues, respectively, to generate a combined transcriptome library as a reference.
RESULTS: A total of 34.37 million filtered and normalized reads were assembled into 188,735 transcripts with a total length of 136.67 Mbp. We performed a similarity search against all the publicly available genome sequences and found similarity matches for 163,200 (86.5%) of Polygonum minus transcripts, largely from Arabidopsis thaliana (58.9%). Transcript abundance in the leaf and root tissues were estimated and validated through RT-qPCR of seven selected transcripts involved in the biosynthesis of phenylpropanoids and flavonoids. All the transcripts were annotated against KEGG pathways to profile transcripts related to the biosynthesis of secondary metabolites.
DISCUSSION: This comprehensive transcriptome profile will serve as a useful sequence resource for molecular genetics and evolutionary research on secondary metabolite biosynthesis in Polygonaceae family. Transcriptome assembly of Polygonum minus can be accessed at http://prims.researchfrontier.org/index.php/dataset/transcriptome.