The lucrative market of herbal remedies spurs rampant adulteration, particularly with pharmaceutical drugs and their unapproved analogues. A comprehensive screening strategy is, therefore, warranted to detect these adulterants and, accordingly, to safeguard public health. This study uses the data-dependent acquisition of liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) to screen phosphodiesterase 5 (PDE5) inhibitors in herbal remedies using suspected-target and non-targeted strategies. For the suspected-target screening, we used a library comprising 95 PDE5 inhibitors. For the non-targeted screening, we adopted top-down and bottom-up approaches to flag novel PDE5 inhibitor analogues based on common fragmentation patterns. LC-QTOF-MS was optimised and validated for capsule and tablet dosage forms using 23 target analytes, selected to represent different groups of PDE5 inhibitors. The method exhibited excellent specificity and linearity with limit of detection and limit of quantification of <40 and 80 ng/mL, respectively. The accuracy ranged from 79.0% to 124.7% with a precision of <14.9% relative standard deviation. The modified, quick, easy, cheap, effective, rugged, and safe extraction provided insignificant matrix effect within -9.1%-8.0% and satisfactory extraction recovery of 71.5%-105.8%. These strategies were used to screen 52 herbal remedy samples that claimed to enhance male sexual performance. The suspected-target screening resulted in 33 positive samples, revealing 10 target analytes and 2 suspected analytes. Systematic MS and tandem MS interrogations using the non-targeted screening returned insignificant signals, indicating the absence of potentially novel analogues. The target analytes were quantified from 0.03 to 121.31 mg per dose of each sample. The proposed strategies ensure that all PDE5 inhibitors are comprehensively screened, providing a useful tool to curb the widespread adulteration of herbal remedies.
Dyes are aromatic organic compound which have an affinity towards the substrate to which they are being applied to. The presence of dyes in wastewater samples is not safe for human even at low level. The presence of dyes in wastewater which are discharged from textile industry must be analysed. Hence, a precise, fast, accurate, simple and inexpensive analytical method with low detection limit is needed for the determination of dyes in wastewaters. The differential pulse anodic stripping voltammetric (DPASV) technique using bare glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for Reactive Black 5 (RB5) determination. Several experimental voltammetric parameters were being optimized for obtaining a maximum response before analytical validation of the proposed technique being carried out. The optimum parameters were initial potential (Ei) = +0.3 V, end potential (Ef) = +1.0 V, scan rate (v) = 0.04 V/s, accumulation time (tacc) = 50 s, accumulation potential (Eacc) = 0.4 V and pulse amplitude = 0.075 V. The well-defined anodic peak appeared at 0.77972 V. The response was linear from 0.5 to 1.25 mg/L (R2=0.9986) with LOD of 0.050 mg/L. The relative standard deviation (RSD) achieved were 0.08 %, 0.62 % and 0.50 %, respectively for three consecutive days. The % recovery range achieved was from 89.71 % to 111.15 %. It can be concluded that the proposed technique is precise, accurate, inexpensive, fast and has a potential to be an alternative analytical technique for RB5 analysis. The proposed method will in the future be tested for the amount of RB5 in the wastewater samples from textile industry.
A new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface has been described in order to build up the effective electrical wiring of the enzyme units with the electrode. The synthesized 3D HRP/CNT network has been characterized with cyclic voltammetry and amperometry which results the establishment of direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the high biological activity and stability is exhibited by the immobilized HRP and a quasi-reversible redox peak of the redox centre of HRP was observed at about -0.355 and -0.275V vs. Ag/AgCl. The electron transfer rate constant, KSand electron transfer co-efficient α were found as 0.57s-1and 0.42, respectively. Excellent electrocatalytic activity for the reduction of H2O2was exhibited by the developed biosensor. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2determination. The linear range is from 1.0×10-7to 1.2×10-4M with a detection limit of 2.2.0×10-8M at 3σ. The Michaelies-Menten constant Kapp M value is estimated to be 0.19mM. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability.
The presence of erectile dysfunction (ED) drugs in adulterated dietary supplements, mainly in pharmaceutical dosage forms, is frequently addressed in the literature. Little attention is given to food products despite their increasing adulteration trend. To address this knowledge gap targeted, suspected-target, and non-targeted strategies were utilised to analyse ED drugs and their analogues in powdered drink mix (PDM), honey, jelly, hard candy, and sugar-coated chewing gum using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The method was optimised and validated using 23 target analytes, representing different ED drugs with structural similarities. The modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction exhibited insignificant matrix effect (ME) within - 9.2-8.8% and provided complete coverage of target analytes with acceptable extraction recovery (RE) within 75.5-123.9%, except for carbodenafil in the PDM matrix. Based on the ME and RE performance, the analytical method was validated to analyse 25 food samples that claimed to enhance male sexual performance. The method exhibited good specificity and linearity with a limit of detection within 10-70 ng/mL and limit of quantification of 80 ng/mL. Similarly, the accuracy and precision were satisfactory within 77.4-122.0% and
Silver-reduced graphene oxide (Ag-rGO) nanohybrid was synthesized by applying a slight modification to the Turkevich method using trisodium citrate as a reducing and stabilizing agent to catalyze the non-enzymatic electrochemical detection of hydrogen peroxide (H₂O₂). Spherical silver nanoparticles (AgNPs) with an average particle size of 2.2 nm surfaced on reduced graphene oxide (rGO) sheets. Cyclic voltammograms (CV) obtained from glassy carbon (GC) electrode coated with Ag-rGO nanohybrid (4 mM) exhibited a peak at an overpotential of -0.52 V, with a larger faradaic current for the reduction of H₂O₂. Using the modified electrode for the linear sweep voltammetry (LSV) detection of H₂O₂, the detection limit and sensitivity were determined to be 4.8 μM (S/N ═ 3) and 0.0262 μA μM-1, respectively. The sensor appeared selective and stable towards H₂O₂ in the presence of possible interference, and it also demonstrated good recoveries of H₂O₂ concentration in real water samples.
The translation of stacking techniques used in capillary electrophoresis (CE) to microchip CE (MCE) in order to improve concentration sensitivity is an important area of study. The success in stacking relies on the generation and control of the stacking boundaries which is a challenge in MCE because the manipulation of solutions is not as straightforward as in CE with a single channel. Here, a simple and rapid on-line sample concentration (stacking strategy) in a battery operated nonaqueous MCE device with a commercially available double T-junction glass chip is presented. A multi-stacking approach was developed in order to circumvent the issues for stacking in nonaqueous MCE. The cationic analytes from the two loading channels were injected under field-enhanced conditions and were focused by micelle-to-solvent stacking. This was achieved by the application of high electric fields along the two loading channels and a low electric field in the separation channel, with one ground electrode in the reservoir closest to the junction. At the junction, the stacked zones were re-stacked under field-enhanced conditions and then injected into the separation channels. The multi-stacking was verified under a fluorescence microscope using Rhodamine 6G as the analyte, revealing a sensitivity enhancement factor (SEF) of 110. The stacking approach was also implemented in the nonaqueous MCE with contactless conductivity detection of the anticancer drug tamoxifen as well as its metabolites. The multi-stacking and analysis time was 40 s and 110 s, respectively, the limit of detections was from 10 to 35 ng/mL, and the SEFs were 20 to 50. The method was able to quantify the target analytes from breast cancer patients.
The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis.
Ascorbic acid or vitamin C is mostly found in natural products such as fruits and vegetables. High performance liquid chromatography (HPLC) method has been developed and validated to compare the ascorbic acid content in Benincasa hispida (Bh) fruit extract with three different extraction solvents; i) 3% metaphosphoric acid, ii) 3% citric acid and iii) distilled water. The compound has been detected and quantified by the use of HPLC coupled with UV-Vis detector. The amount of ascorbic acid detected in Bh fruit extract prepared with different extraction solvents; 3% metaphosphoric acid, 3% citric acid and distilled water were 13.18, 7.91 and 9.42 mg/100g respectively. Total run time was 6 min and the retention time was 2.60 min. Calibration curve was linear with the concentration range 1.00 – 16.00 μg/ml. Limits of detection was 0.24 μg/ml, limit of quantification was 0.81 μg/ml and recovery was 93.52%. The result showed ascorbic acid content is higher in Bh fruit extract with 3% metaphosphoric acid, followed by extract with distilled water and 3% citric acid. Thus, Bh is another novel fruit/ vegetable potentially used as food ingredient as it contains a good source of ascorbic acid that can be good for one’s health.
In this paper, we propose a metal-polydopamine (MPDA) framework with a specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability toward various organic fluorophore such as aminoethylcoumarin acetate, 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine, and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ions. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM-labeled ssDNA was adsorbed onto the MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor, highly sensitive and selective determination of Hg2+ and Ag+ ions is achieved through exonuclease III signal amplification activity. The detection limits of Hg2+ and Ag+ achieved to be 1.3 and 34 pM, respectively, were compared to co-existing metal ions and graphene oxide-based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.
Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg-1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 μA) and a lower detection limit (0.05 μM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.
A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient (R2 ) in the range of 0.991-0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l-1 (atrazine) and 1.22 µg l-1 (propazine), and the limit of quantitation was 3.54 µg l-1 (atrazine) and 4.07 µg l-1 (propazine). Satisfactory recoveries in the range of 81-108% were determined in milk samples at 5 and 1000 µg l-1, respectively, with low relative standard deviation, n = 3 of 0.301-7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.
The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO₂) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO₂ nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO₂ NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO₂ in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1-14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO₂ nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.
A portable microchip electrophoresis (MCE) coupled with on-chip contactless conductivity detection (C(4)D) system was evaluated for the determination of vancomycin in human plasma. In order to enhance the detection sensitivity, a new online multi-stacking preconcentration technique based on field-enhanced sample injection (FESI) and micelle-to-solvent stacking (MSS) was developed and implemented in MCE-C(4)D system equipped with a commercially available double T-junction glass chip. The cationic analytes from the two sample reservoirs were injected under FESI conditions and subsequently focused by MSS within the sample-loading channel. The proposed multi-stacking strategy was verified under a fluorescence microscope using Rhodamine 6G as the model analyte and a sensitivity enhancement factor (SEF) of up to 217 was achieved. The developed approach was subsequently implemented in the aqueous-based MCE, coupled to C(4)D in order to monitor the targeted antibiotic (in this case, vancomycin) present in human plasma samples. The multi-stacking and analysis time for vancomycin were 50s and 250s respectively, with SEF of approximately 83 when compared to typical gated injection. The detection limit of the method for vancomycin was 1.2μg/mL, with intraday and interday repeatability RSDs of 2.6% and 4.3%, respectively. Recoveries in spiked human plasma were 99.0%-99.2%.
The role of incorporation of gold nanoparticles (50-130 nm in diameter) into a series of photocurable methacrylic-acrylic based biosensor membranes containing tyrosinase on the response for phenol detection was investigated. Membranes with different hydrophilicities were prepared from 2-hydroxyethyl methacrylate and n-butyl acrylate via direct photocuring. A range of gold nanoparticles concentrations from 0.01 to 0.5 % (w/w) was incorporated into these membranes during the photocuring process. The addition of gold nanoparticles to the biosensor membrane led to improvement in the response time by a reduction of approximately 5 folds to give response times of 5-10 s. The linear response range of the phenol biosensor was also extended from 24 to 90 mM of phenol. The hydrophilicities of the membrane matrices demonstrated strong influence on the biosensor response and appeared to control the effect of the gold nanoparticles. For less hydrophilic methacrylic-acrylic membranes, the addition of gold nanoparticles led to a poorer sensitivity and detection limit of the biosensor towards phenol. Therefore, for the application of gold nanoparticles in the enhancement of a phenol biosensor response, the nanoparticles should be immobilized in a hydrophilic matrix rather than a hydrophobic material.
This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000 ng/L) with coefficient of determination (R2 ) of ≥0.9951, low limits of detection (3-16 ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations
This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
α-synuclein is a predominantly expressing neuronal protein for understanding the neurodegenerative disorders. A diagnosing system with aggregated α-synuclein encoded by SNCA gene is necessary to make the precautionary treatment against Parkinson's disease (PD). Herein, gold-nanourchin conjugated anti-α-synuclein antibody was desired as the probe and seeded on single-walled carbon nanotube (SWCN) integrated interdigitated electrode (IDE). The surface morphology of SWCN-modified IDE and gold urchin-antibody conjugates were observed under FESEM, FETEM and AFM, the existing elements were confirmed. Voltammetry analysis revealed that the limit of fibril-formed α-synuclein detection was improved by 1000 folds (1 fM) with gold-nanourchin-antibody modified surface, compared to the surface with only antibody (1 pM). Validating the interaction of α-synuclein by Enzyme-linked Immunosorbent Assay was displayed the detection limit as 10 pM. IDE has a good reproducibility and a higher selectivity on α-synuclein as evidenced by the interactive analysis with the control proteins, PARK1 and DJ-1.
A method for the determination of aflatoxins B1 and B2 in peanuts and corn based products is described. The samples were extracted with a mixture of acetonitrile-water (84:16), followed by multifunctional clean-up and liquid chromatography with fluorescence detection. Both calibration curves showed good correlation from 4.0 to 32.0 ppb for aflatoxin B1 (r=0.9999) and 1.2 to 9.6 ppb for aflatoxin B2 (r=0.9997). The detection limit of aflatoxins B1 and B2 were established at 0.1 and 0.03 ppb, respectively, based on signal-to-noise ratio of 3:1. Average recoveries for the determination of aflatoxins B1 and B2 at 10 and 3 ppb spiking levels, respectively ranged from 94.2 to 107.6%. A total of 20 peanut samples and corn based products were obtained from retail shop and local market around Kuala Terengganu and analyzed for aflatoxins B1 and B2 contents, using the proposed method. Aflatoxins B1 and B2 were detected in 5 out of the 9 peanuts samples and 5 out of the 11 corn based products, at levels ranging from 0.2 to 101.8 ppb.
A gene sensor for rapid detection of the Human Papillomavirus 16 (HPV 16) which is associated with the appearance of cervical cancer was developed. The assay is based on voltammetric determination of HPV 16 DNA by using interdigitated electrodes modified with titanium dioxide nanoparticles. Titanium dioxide nanoparticles (NPs) were used to modify a semiconductor-based interdigitated electrode (IDE). The surface of the NPs was then functionalized with a commercial 24-mer oligomer DNA probe for HPV 16 that was modified at the 5' end with a carboxyl group. If the probe interacts with the HPV 16 ssDNA, the current, best measured at a working voltage of 1.0 V, increases. The gene sensor has has a ∼ 0.1 fM limit of detection which is comparable to other sensors. The dielectric voltammetry analysis was carried out from 0 V to 1 V. The electrochemical sensitivity of the IDE is 2.5 × 10-5 μA·μM-1·cm-2. Graphical abstract Schematic of an interdigitated electrode (IDE) modified with titanium dioxide nanoparticles for voltammetric determination of HPV 16 DNA by using an appropriate DNA probe.
Ash gourd (Benincasa hispida, Bh) is traditionally claimed useful in treating asthma, cough, diabetes, haemoptysis and hemorrhages from internal organs, epilepsy, fever and balancing of the body heat. One of the major phenolic acids presented in Benincasa hispida is gallic acid, a phenolic compound which is linked with its ability in reducing Type II diabetes. The aim of the present study was to investigate the effect of different extraction techniques on the concentration of gallic acid in Bh. The Bh extracts were prepared with three different techniques namely; fresh extract (FE), low heating (LH) and drying and heating (DH). The gallic acid has been detected and quantified using high performance liquid chromatography (HPLC) coupled with uv-Vis detector. The amount of gallic acid detected in FE, LH and DH were 0.036, 0.050 and 0 272 mg1100 g, respectively. The limits of detection was 0.75 liglmL while the limit of quantification and recovery were 2.50 liglmL and 95 .53% , respectively. In summary, HPLC technique coupled with vv detector systems able to quantify gallic acid in Bh extracts. The gallic acid were present at higher concentration in Bh extracted using drying and heating, followed by low heating and fresh extract methods.