Methods: The respondents were conveniently selected among visitors attending an outpatient clinic in a tertiary hospital. We excluded those with any cancers, chronic diseases and those that were illiterate. The exploratory factor and reliability analyses were conducted.
Results: A total of 108 respondents were recruited of which 67.7% were males and the mean age was 54.59 years (standard deviation 8.93). The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy values for KAP were 0.64, 0.66 and 0.67, respectively (P < 0.001). The 17 items of knowledge formed five domains with loading factors ranging from 0.54-0.89. The six items of attitude formed two domains with loading factors ranging from 0.64-0.80 and the 15 practices had four domains with loading factors ranging from 0.52-0.83. The total variances explained for each KAP were 61.02%, 56.41% and 53.12%, respectively. The internal consistency Cronbach alpha values on KAP were 0.61, 0.60 and 0.70, respectively.
Conclusion: The final questionnaire is suitable for measuring KAP related to CRC among the Malay population.
METHODS: We conducted transcriptome profiling on 32 colonic biopsies [11 long-duration UC, ≥20 years; and 21 short-duration UC, ≤5 years] using Affymetrix Human Transcriptome Array 2.0. Differentially expressed genes [fold change > 1.5, p < 0.05] and alternative splicing events [splicing index > 1.5, p < 0.05] were determined using the Transcriptome Analysis Console. KOBAS 3.0 and DAVID 6.8 were used for KEGG and GO analysis. Selected genes from microarray analysis were validated using qPCR.
RESULTS: There were 640 differentially expressed genes between both groups. The top ten upregulated genes were HMGCS2, UGT2A3 isoforms, B4GALNT2, MEP1B, GUCA2B, ADH1C, OTOP2, SLC9A3, and LYPD8; the top ten downregulated genes were PI3, DUOX2, VNN1, SLC6A14, GREM1, MMP1, CXCL1, TNIP3, TFF1, and LCN2. Among the 123 altered KEGG pathways, the most significant were metabolic pathways; fatty acid degradation; valine, leucine, and isoleucine degradation; the peroxisome proliferator-activated receptor signalling pathway; and bile secretion, which were previously linked with CAC. Analysis showed that 3560 genes exhibited differential alternative splicing between long- and short-duration UC. Among them, 374 were differentially expressed, underscoring the intrinsic relationship between altered gene expression and alternative splicing.
CONCLUSIONS: Long-duration UC patients have altered gene expressions, pathways, and alternative splicing events as compared with short-duration UC patients, and these could be further validated to improve our understanding of the pathogenesis of CAC.
METHODS: The retrospective arm (2011-2014) included adults with metastatic colorectal cancer who had initiated first-line therapy with ≥1 post-baseline visit and survival data. The prospective arm (2014-2019) enrolled newly diagnosed patients with histologically proven metastatic colorectal cancer with ≥1 measurable lesion per Response Evaluation Criteria in Solid Tumors, and tissue availability for biomarker analysis. Data look-back and follow-up were 2 years; the rate of RAS mutation was evaluated.
RESULTS: RAS testing was ordered for patients in retrospective (326/417) and prospective (407/500) studies. In the former, testing was typically prescribed after first-line treatment initiation, significantly more in patients with stage IV disease (P < .005), resulting in the addition of targeted therapy (41.8% anti-epidermal growth factor receptor, 30.2% anti-vascular endothelial growth factor) in wild-type metastatic colorectal cancer, and significantly impacted the treatment of left-sided tumors (P = .037). In the latter, 58.4% were RAS wild-type; 41.6% were RAS mutant. Non-prescription of RAS testing was attributed to test unavailability, financial, or medical rea sons; predictors of testing prescription were older age, primary tumor in ascending colon, and high tumor grade. RAS status knowledge resulted in the addition of anti-vascular endothelial growth factor (20.4%) or anti-epidermal growth factor receptor therapy (21.2%).
CONCLUSION: Before 2014, RAS testing in patients with colorectal cancer in the Middle East and North Africa was often performed after first-line treatment. Testing is more routine in newly diagnosed patients, potentially shifting early treatment patterns.