Displaying publications 101 - 120 of 126 in total

Abstract:
Sort:
  1. Rattanapitoon SK, Pechdee P, Boonsuya A, Meererksom T, Wakkhuwatapong P, Leng M, et al.
    Trop Biomed, 2020 Sep 01;37(3):730-743.
    PMID: 33612786 DOI: 10.47665/tb.37.3.730
    Helminth infections (HIs) are an important public health problem in tropical countries, and the associated problems have been neglected in rural areas of Thailand. Therefore, this study reports the prevalence and intensity of HIs among inhabitants of the Khon Sawan district, Chaiyaphum province, and Kaeng Samnam Nang district, Nakhon Ratchasima province, which are located near the Chi River and Lahanna water reservoir, northeastern Thailand. A cross-sectional descriptive study was conducted between July 31, 2018, and June 30, 2019, among rural villagers from 40 rural villages in 4 subdistricts. The participants were selected from the village enrolment list after proportional allocation of the total sample size. Faecal samples from 691 inhabitants were prepared using solvent-free faecal parasite concentrator, and helminths were then detected using a light microscope. Statistical analysis included the Chi-square test with Yates correction, and multivariable logistic regression was performed. A P-value of <0.05 was considered statistically significant. The prevalence of HIs was 2.03%. The most prevalent helminths were Opisthorchis viverrini (1.31%), followed by Strongyloides stercoralis (0.44%), Ascaris lumbricoides (0.29%), hookworm (0.15%), Teania spp. (0.15%) and one minute intestinal fluke (0.15%). Coinfections were identified in 2 cases for S. stercoralis and hookworm and 1 case for O. viverrini and S. stercoralis infection. All infected participants had a light intensity of HI. There was no significant difference between general characteristics for all HIs. The prevalence of HIs was not significantly associated with general characteristics. This study indicates that the infections result mainly from foodborne helminths and skin-penetrating nematodes. Therefore, interventions should concentrate on the personal hygiene of the population and improving sanitation to reduce HIs in this area.
    Matched MeSH terms: Coinfection
  2. Abba Y, Ilyasu YM, Noordin MM
    Microb Pathog, 2017 Jul;108:49-54.
    PMID: 28478198 DOI: 10.1016/j.micpath.2017.04.038
    AIM: Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period.

    MATERIALS AND METHODS: A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates.

    RESULTS: Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p 

    Matched MeSH terms: Coinfection
  3. Khoo, Ying Wei, Iftikhar, Yasir, Kong, Lih Ling, Ganesan Vadamalai
    MyJurnal
    Citrus bent leaf viroid (CBLVd) from genus Apscaviroid, is one of the widely distributed viroids among the seven citrus viroids. It is comprised of three variants: Citrus viroid-Ia (CVd-Ia) (327 - 329 nucleotides), Citrus viroid-Ib (CVd-Ib) (315 - 319 nucleotides) and Citrus viroid-I-low sequence similarity (CVd-I-LSS) (325 - 330 nucleotides). Virulence of CBLVd totally expressed on citrus plants. Etrog citron (Citrus medica (L.)) coinfected with CBLVd, Citrus exocortis viroid (CEVd), Citrus viroid-III (CVd-III) and Citrus viroid-V (CVd-V) showed epinasty, leaf rolling, and stunting. CBLVd has been reported to reduce the canopy proportion and fruit production of citrus trees inserted on trifoliate orange rootstock. Moreover, citrus tree infected with singly CBLVd or in combinations with CEVd, Hop stunt viroid (CVd-II) and CVd-III induced dwarfing have been associated with poor development of the root system. Reverse-transcriptase polymerase chain reaction (RT-PCR) amplification and multiplex reverse-transcriptase polymerase chain reaction (MRT-PCR) amplification have been widely used to detect citrus viroids including CBLVd. As citrus viroids are emerging threats in citrus groves, therefore, this review covers the evolution, geographical distribution and epidemiology, economic impact and symptomatology, host range and transmission, detection, and management will be helpful in formulating the integrated management strategies for CBLVd.
    Matched MeSH terms: Coinfection
  4. Hanafiah A, Binmaeil H, Raja Ali RA, Mohamed Rose I, Lopes BS
    Infect Drug Resist, 2019;12:3051-3061.
    PMID: 31632095 DOI: 10.2147/IDR.S219069
    Aims and objectives: Helicobacter pylori has been classified as high priority pathogen by the WHO in 2017. The emergence of antibiotic-resistant strains is one of the main causes of treatment failure in H. pylori infection. This study determined and characterized primary and secondary resistances in H. pylori in Malaysia.

    Materials and methods: Gastric biopsies from antrum (n=288) and corpus (n=283) were obtained from 288 patients who underwent endoscopy at Universiti Kebangsaan Malaysia Medical Center (UKMMC), Kuala Lumpur, Malaysia. Antibiotic susceptibility to six classes of antibiotics was determined by the E-test. Mutations conferring in resistance in functional genes were identified by PCR and sequencing.

    Results: Overall resistance rates to metronidazole, clarithromycin and levofloxacin were 59.3% (35/59), 35.6% (21/59) and 25.4% (15/59), respectively. Secondary isolates showed significantly higher resistance rates to clarithromycin compared to the primary isolates. Mixed infection with susceptible and resistant isolates was observed in 16.2% (6/37) of cases, of which 83.3% (n=5) had infection with the same strain. 41% (18/44) of isolates were resistant to more than one class of antibiotics of which 50% (9/18) were multidrug-resistant, two being primary and seven being secondary isolates. Mutations in rdxA, 23S rRNA and gyrA genes were associated with resistance to metronidazole, clarithromycin and levofloxacin, respectively.

    Conclusion: The high level of resistance to metronidazole, clarithromycin and levofloxacin seen in H. pylori isolates in our setting warrants the need for continuous surveillance and highlights caution in use of antibiotics generally used as first-line therapy in H. pylori eradication regimen.

    Matched MeSH terms: Coinfection
  5. Naderali N, Nejat N, Tan YH, Vadamalai G
    Plant Dis, 2013 Nov;97(11):1504.
    PMID: 30708488 DOI: 10.1094/PDIS-04-13-0412-PDN
    The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV 'Candidatus Phytoplasma cynodontis' group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the 'Candidatus Phytoplasma asteris' 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.
    Matched MeSH terms: Coinfection
  6. Shetty S, Umakanth S, Manandhar B, Nepali PB
    BMJ Case Rep, 2018 Mar 15;2018.
    PMID: 29545426 DOI: 10.1136/bcr-2017-222352
    Leprosy and tuberculosis (TB) are endemic to India, however, their coinfection is not frequently encountered in clinical practice. Here, we report a 32-year-old female patient who presented with a history of high-grade intermittent fever, cough and painless skin lesions since a month, along with bilateral claw hand (on examination). The haematological profile was suggestive of anaemia of chronic disease, chest radiograph showed consolidation, sputum smears were positive for Mycobacterium tuberculosis, and skin slit smear confirmed leprosy. The patient was prescribed WHO recommended multidrug therapy for multibacillary leprosy with three drugs. Additionally, prednisolone was added to her regimen for 2 weeks to treat the type 2 lepra reaction. For treatment of TB, she was placed on the standard 6-month short course chemotherapy. She was lost to follow-up, and attempts were made to contact her. Later, it came to our notice that she had discontinued medications and passed away 3 months after diagnosis.
    Matched MeSH terms: Coinfection
  7. Chuah CH, Ong YC, Kong BH, Woo YY, Wong PS, Leong KN, et al.
    J R Coll Physicians Edinb, 2020 Jun;50(2):138-140.
    PMID: 32568283 DOI: 10.4997/JRCPE.2020.211
    Talaromycosis typically occurs as an opportunistic infection among immunocompromised individuals. Infection caused by species other than T. marneffei is uncommon. While most reported cases describe infection in the lungs, we report an extremely rare intracranial Talaromyces species infection. This 61-year-old with end-stage renal disease who was unwell for the previous two months, presented with fever and worsening confusion lasting for three days. Lumbar puncture was suggestive of meningitis. Cerebrospinal fluid (CSF) culture was later confirmed to be Penicillium chrysogenum. The patient was co-infected with Group B Streptococcus sepsis. He improved with amphotericin B and ceftriaxone and was discharged with oral itraconazole for four weeks. However, he died of unknown causes two weeks later at home. Talaromyces species infection in the central nervous system is uncommon. This case highlighted a rare but life-threatening fungal meningitis. Among the four reported cases worldwide, none of the patients survived.
    Matched MeSH terms: Coinfection
  8. Noori Goodarzi N, Pourmand MR, Rajabpour M, Arfaatabar M, Mosadegh M, Syed Mohamad SA
    New Microbes New Infect, 2020 Sep;37:100744.
    PMID: 32953125 DOI: 10.1016/j.nmni.2020.100744
    Mycoplasma pneumoniae, Legionella pneumophila and Chlamydia pneumoniae are the most common bacterial agents, which account for 15-40%, 2-15% and 5-10% of atypical community-acquired pneumonia (CAP) respectively. These agents are mostly associated with infection in the outpatient setting. The aim of this study was to evaluate the frequency of these pathogens among patients with CAP attending outpatient clinics in Tehran. A cross-sectional study was carried out of 150 patients attending to educational hospitals in Tehran with CAP. M. pneumoniae, L. pneumophila and Chlamydia spp. were detected by PCR assay, targeting the P1 adhesion gene, macrophage infectivity potentiator (mip) gene and 16S rRNA gene respectively from throat swabs obtained from each patient. A total of 86 (57.3%) of 150 patients were women; median age was 50 years (interquartile range, 35-65 years). M. pneumoniae, L. pneumophila and Chlamydia spp. were detected in 37 (24.7%), 25 (16.7%) and 11 (7.3%) patients respectively; of these, 66 patients (44%) were infected at least by one of these three pathogens. The frequency of L. pneumophila was significantly higher among patients over 60 years old (p 0.03). Coinfection was detected in seven patients (4.7%); six were infected by M. pneumoniae and L. pneumophila, and only one was infected by L. pneumophila and Chlamydia spp. M. pneumoniae was the most prevalent agent of atypical CAP, and L. pneumophila was more likely to infect elderly rather than younger people. Further studies on the prevalence of CAP and its aetiologic agents are needed to improve the diagnosis and treatment of CAP patients.
    Matched MeSH terms: Coinfection
  9. Jalal TMT, Abdullah S, Wahab FA, Dir S, Naing NN
    Malays J Med Sci, 2017 Dec;24(6):75-82.
    PMID: 29379389 DOI: 10.21315/mjms2017.24.6.9
    Background: One of the six strategies developed by WHO, in order to stop Tuberculosis (TB) is addressing TB/HIV high-risk groups. This study aimed to determine the prevalence of successful TB treatment and factors associated with TB treatment success among TB/HIV co-infection patients in North-East Malaysia.
    Methods: A cross-sectional study was carried out in the a-year period from 2003 to 2012 by reviewing TB/HIV records in all hospitals and health clinics. The outcome of interest was treatment success as defined by Ministry of Health (MOH) when the patients was cured or completed TB treatment.
    Results: Out of 1510 total TB/HIV co-infection cases, 27.9% (95% CI: 25.2, 30.6) of the patients were having treatment success. A majority of TB/HIV co-infection cases were male (91.1%). Fifty-eight percent the patients were drug addicts and 6% were having positive tuberculin tests. The multiple logistic regression revealed that male (OR: 0.39, 95% CI: 0.22, 0.71) and positive tuberculin test result (OR: 2.61, 95% CI: 1.63, 4.19) were significantly associated with the treatment success of TB/HIV co-infection patients. Other factors such as age, comorbid, sputum smear and x-ray findings were not significantly factors in this study.
    Conclusion: Female patients and those with negative tuberculin test should be emphasised for successful tuberculosis treatment.
    Matched MeSH terms: Coinfection
  10. Hitam SAS, Hassan SA, Maning N
    Malays J Med Sci, 2019 Jan;26(1):107-114.
    PMID: 30914898 MyJurnal DOI: 10.21315/mjms2019.26.1.10
    Background: Foot infection is a major complication of diabetes mellitus (DM) and its agents are usually polymicrobial. This study aims to describe the agent and determine the association between polymicrobial infections and the severity of diabetic foot infections (DFI) and their outcomes.

    Methods: This retrospective cohort study was conducted during one year and it involved 104 patients. Their records were reviewed and assessed. The causative agents and its sensitivity pattern were noted. The results were presented as descriptive statistic and analysed.

    Results: A total of 133 microorganisms were isolated with 1.28 microorganisms per lesion. The microorganism isolated were 62% (n = 83) GN (Gram-negative) and 38% (n = 50) GP (Gram-positive). GN microorganisms include Pseudomonas spp (28%), Proteus spp (11%), Klebsiella spp (8%) and E. coli (4%). Staphylococcus aureus (54%) was predominant among GP, followed by Group B Streptococci (26%) and Enterococcus spp (6%). Thirty patients (28.8%) had polymicrobial infections. The association between the quantity of microorganisms and severity of DFI was significant. Among severe DFI cases, 77.8% with polymicrobial microorganisms underwent amputation compared to 33.3% with monomicrobial infection.

    Conclusion: GN microorganisms were predominantly isolated from DFIs and remained sensitive to widely used agents. Polymicrobial infections were associated with DFI severity.
    Matched MeSH terms: Coinfection
  11. Dhanoa A, Fang NC, Hassan SS, Kaniappan P, Rajasekaram G
    Virol J, 2011;8:501.
    PMID: 22050645 DOI: 10.1186/1743-422X-8-501
    Numerous reports have described the epidemiological and clinical characteristics of influenza A (H1N1) 2009 infected patients. However, data on the effects of bacterial coinfection on these patients are very scarce. Therefore, this study explores the impact of bacterial coinfection on the clinical and laboratory parameters amongst H1N1 hospitalized patients.

    Study site: Hospital Sultanah Aminah Johor Bahru
    Matched MeSH terms: Coinfection*
  12. Saeidi A, Chong YK, Yong YK, Tan HY, Barathan M, Rajarajeswaran J, et al.
    Cell Immunol, 2015 Sep;297(1):19-32.
    PMID: 26071876 DOI: 10.1016/j.cellimm.2015.05.005
    The role of T-cell immunosenescence and functional CD8(+) T-cell responses in HIV/TB co-infection is unclear. We examined and correlated surrogate markers of HIV disease progression with immune activation, immunosenescence and differentiation using T-cell pools of HIV/TB co-infected, HIV-infected and healthy controls. Our investigations showed increased plasma viremia and reduced CD4/CD8 T-cell ratio in HIV/TB co-infected subjects relative to HIV-infected, and also a closer association with changes in the expression of CD38, a cyclic ADP ribose hydrolase and CD57, which were consistently expressed on late-senescent CD8(+) T cells. Up-regulation of CD57 and CD38 were directly proportional to lack of co-stimulatory markers on CD8(+) T cells, besides diminished expression of CD127 (IL-7Rα) on CD57(+)CD4(+) T cells. Notably, intracellular IFN-γ, perforin and granzyme B levels in HIV-specific CD8(+) T cells of HIV/TB co-infected subjects were diminished. Intracellular CD57 levels in HIV gag p24-specific CD8(+) T cells were significantly increased in HIV/TB co-infection. We suggest that HIV-TB co-infection contributes to senescence associated with chronic immune activation, which could be due to functional insufficiency of CD8(+) T cells.
    Matched MeSH terms: Coinfection/immunology
  13. Margolis B, Al-Darraji HA, Wickersham JA, Kamarulzaman A, Altice FL
    Int J Tuberc Lung Dis, 2013 Dec;17(12):1538-44.
    PMID: 24200265 DOI: 10.5588/ijtld.13.0193
    There are currently no routine screening procedures for active tuberculosis (TB) or latent tuberculous infection (LTBI) in Malaysian prisons.
    Matched MeSH terms: Coinfection
  14. Furuya-Kanamori L, Liang S, Milinovich G, Soares Magalhaes RJ, Clements AC, Hu W, et al.
    BMC Infect Dis, 2016;16:84.
    PMID: 26936191 DOI: 10.1186/s12879-016-1417-2
    BACKGROUND: Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution.
    METHODS: Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya.
    RESULTS: Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported.
    CONCLUSIONS: Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority.
    Erratum: Furuya-Kanamori L, Liang S, Milinovich G, Magalhaes RJ, Clements AC, Hu W, Brasil P, Frentiu FD, Dunning R, Yakob L. Erratum to: Co-distribution and co-infection of chikungunya and dengue viruses. BMC Infect Dis. 2016 Apr 29;16:188. doi: 10.1186/s12879-016-1519-x. PubMed PMID: 27129475; PubMed Central PMCID: PMC4851825.
    Matched MeSH terms: Coinfection
  15. Han XY, Aung FM, Choon SE, Werner B
    Am J Clin Pathol, 2014 Oct;142(4):524-32.
    PMID: 25239420 DOI: 10.1309/AJCP1GLCBE5CDZRM
    To differentiate the leprosy agents Mycobacterium leprae and Mycobacterium lepromatosis and correlate them with geographic distribution and clinicopathologic features.
    Matched MeSH terms: Coinfection
  16. Rothan HA, Bidokhti MRM, Byrareddy SN
    J Autoimmun, 2018 05;89:11-20.
    PMID: 29352633 DOI: 10.1016/j.jaut.2018.01.002
    Dissemination of vector-borne viruses, such as Zika virus (ZIKV), in tropical and sub-tropical regions has a complicated impact on the immunopathogenesis of other endemic viruses such as dengue virus (DENV), chikungunya virus (CHIKV) and human immunodeficiency virus (HIV). The consequences of the possible co-infections with these viruses have specifically shown significant impact on the treatment and vaccination strategies. ZIKV is a mosquito-borne flavivirus from African and Asian lineages that causes neurological complications in infected humans. Many of DENV and CHIKV endemic regions have been experiencing outbreaks of ZIKV infection. Intriguingly, the mosquitoes, Aedes Aegypti and Aedes Albopictus, can simultaneously transmit all the combinations of ZIKV, DENV, and CHIKV to the humans. The co-circulation of these viruses leads to a complicated immune response due to the pre-existence or co-existence of ZIKV infection with DENV and CHIKV infections. The non-vector transmission of ZIKV, especially, via sexual intercourse and placenta represents an additional burden that may hander the treatment strategies of other sexually transmitted diseases such as HIV. Collectively, ZIKV co-circulation and co-infection with other viruses have inevitable impact on the host immune response, diagnosis techniques, and vaccine development strategies for the control of these co-infections.
    Matched MeSH terms: Coinfection
  17. Damayanti TA, Alabi OJ, Rauf A, Naidu RA
    Plant Dis, 2010 Apr;94(4):478.
    PMID: 30754487 DOI: 10.1094/PDIS-94-4-0478B
    Yardlong bean (Vigna unguiculata subsp. sesquipedalis) is extensively cultivated in Indonesia for consumption as a green vegetable. During the 2008 season, a severe outbreak of a virus-like disease occurred in yardlong beans grown in farmers' fields in Bogor, Bekasi, Subang, Indramayu, and Cirebon of West Java, Tanggerang of Banten, and Pekalongan and Muntilan of Central Java. Leaves of infected plants showed severe mosaic to bright yellow mosaic and vein-clearing symptoms, and pods were deformed and also showed mosaic symptoms on the surface. In cv. 777, vein-clearing was observed, resulting in a netting pattern on symptomatic leaves followed by death of the plants as the season advanced. Disease incidence in the Bogor region was approximately 80%, resulting in 100% yield loss. Symptomatic leaf samples from five representative plants tested positive in antigen-coated plate-ELISA with potyvirus group-specific antibodies (AS-573/1; DSMZ, German Resource Center for Biological Material, Braunschweig, Germany) and antibodies to Cucumber mosaic virus (CMV; AS-0929). To confirm these results, viral nucleic acids eluted from FTA classic cards (FTA Classic Card, Whatman International Ltd., Maidstone, UK) were subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (CIFor: 5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3' and CIRev: 5'-ACICCRTTYTCDATDATRTTIGTIGC-3') (3) and degenerate primers (CMV-1F: 5'-ACCGCGGGTCTTATTATGGT-3' and CMV-1R: 5' ACGGATTCAAACTGGGAGCA-3') specific for CMV subgroup I (1). A single DNA product of approximately 683 base pairs (bp) with the potyvirus-specific primers and a 382-bp fragment with the CMV-specific primers were amplified from ELISA-positive samples. These results indicated the presence of a potyvirus and CMV as mixed infections in all five samples. The amplified fragments specific to potyvirus (four samples) and CMV (three samples) were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 93 to 100% identity among the cloned amplicons produced using the potyvirus-specific primers (GenBank Accessions Nos. FJ653916, FJ653917, FJ653918, FJ653919, FJ653920, FJ653921, FJ653922, FJ653923, FJ653924, FJ653925, and FJ653926) and 92 to 97% with a corresponding nucleotide sequence of Bean common mosaic virus (BCMV) from Taiwan (No. AY575773) and 88 to 90% with BCMV sequences from China (No. AJ312438) and the United States (No. AY863025). The sequence analysis indicated that BCMV isolates from yardlong bean are more closely related to an isolate from Taiwan than with isolates from China and the United States. The CMV isolates (GenBank No. FJ687054) each were 100% identical and 96% identical with corresponding sequences of CMV subgroup I isolates from Thailand (No. AJ810264) and Malaysia (No. DQ195082). Both BCMV and CMV have been documented in soybean, mungbean, and peanut in East Java of Indonesia (2). Previously, BCMV, but not CMV, was documented on yardlong beans in Guam (4). To our knowledge, this study represents the first confirmed report of CMV in yardlong bean in Indonesia and is further evidence that BCMV is becoming established in Indonesia. References: (1) J. Aramburu et al. J. Phytopathol. 155:513, 2007. (2) S. K. Green et al. Plant Dis. 72:994, 1988. (3) C. Ha et al. Arch. Virol. 153:25, 2008. (4) G. C. Wall et al. Micronesica 29:101, 1996.
    Matched MeSH terms: Coinfection
  18. Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, et al.
    Acta Trop, 2017 Dec;176:206-223.
    PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007
    Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
    Matched MeSH terms: Coinfection
  19. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Shankar-Hari M, Vale CL, Godolphin PJ, Fisher D, Higgins JPT, et al.
    JAMA, 2021 Aug 10;326(6):499-518.
    PMID: 34228774 DOI: 10.1001/jama.2021.11330
    IMPORTANCE: Clinical trials assessing the efficacy of IL-6 antagonists in patients hospitalized for COVID-19 have variously reported benefit, no effect, and harm.

    OBJECTIVE: To estimate the association between administration of IL-6 antagonists compared with usual care or placebo and 28-day all-cause mortality and other outcomes.

    DATA SOURCES: Trials were identified through systematic searches of electronic databases between October 2020 and January 2021. Searches were not restricted by trial status or language. Additional trials were identified through contact with experts.

    STUDY SELECTION: Eligible trials randomly assigned patients hospitalized for COVID-19 to a group in whom IL-6 antagonists were administered and to a group in whom neither IL-6 antagonists nor any other immunomodulators except corticosteroids were administered. Among 72 potentially eligible trials, 27 (37.5%) met study selection criteria.

    DATA EXTRACTION AND SYNTHESIS: In this prospective meta-analysis, risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I2 statistic. The primary analysis was an inverse variance-weighted fixed-effects meta-analysis of odds ratios (ORs) for 28-day all-cause mortality.

    MAIN OUTCOMES AND MEASURES: The primary outcome measure was all-cause mortality at 28 days after randomization. There were 9 secondary outcomes including progression to invasive mechanical ventilation or death and risk of secondary infection by 28 days.

    RESULTS: A total of 10 930 patients (median age, 61 years [range of medians, 52-68 years]; 3560 [33%] were women) participating in 27 trials were included. By 28 days, there were 1407 deaths among 6449 patients randomized to IL-6 antagonists and 1158 deaths among 4481 patients randomized to usual care or placebo (summary OR, 0.86 [95% CI, 0.79-0.95]; P = .003 based on a fixed-effects meta-analysis). This corresponds to an absolute mortality risk of 22% for IL-6 antagonists compared with an assumed mortality risk of 25% for usual care or placebo. The corresponding summary ORs were 0.83 (95% CI, 0.74-0.92; P 

    Matched MeSH terms: Coinfection
  20. Tan HY, Yong YK, Andrade BB, Shankar EM, Ponnampalavanar S, Omar SF, et al.
    AIDS, 2015 Feb 20;29(4):421-31.
    PMID: 25565499 DOI: 10.1097/QAD.0000000000000557
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a substantial problem in HIV/TB coinfected patients commencing antiretroviral therapy (ART). The immunopathogenesis of TB-IRIS includes increased production of proinflammatory chemokines and cytokines, including interleukin-18, which is a signature cytokine of the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 inflammasome. We compared plasma levels of interleukin-18 and other biomarkers of monocyte/macrophage activation in the prediction and characterization of TB-IRIS.
    Matched MeSH terms: Coinfection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links