METHODS: The articles related to the topic were identified through Medline and PubMed search (1968-Feburary 2010) for English language on the interaction between parenteral nutrition and antiepileptic drugs; the search terms used were anti-epileptic drugs, parenteral nutrition, and/or interaction, and/or in vitro. The search looked for prospective randomized and nonrandomized controlled studies; prospective nonrandomized uncontrolled studies; retrospective studies; case reports; and in vitro studies. Full text of the articles were then traced from the Universiti Sains Malaysia (USM) library subscribed databases, including Wiley-Blackwell Library, Cochrane Library, EBSCOHost, OVID, ScienceDirect, SAGE Premier, Scopus, SpringerLINK, and Wiley InterScience. The articles from journals not listed by USM library were traced through inter library loan.
RESULTS: There were interactions between parenteral nutrition and drugs, including antiepileptics. Several guidelines were designed for the management of illnesses such as traumatic brain injuries or cancer patients, involving the use of parenteral nutrition and antiepileptics. Moreover, many studies demonstrated the in vitro and in vivo parenteral nutrition -drugs interactions, especially with antiepileptics.
CONCLUSIONS: There was no evidence supporting the existence of parenteral nutrition-antiepileptic drugs interaction. The issue has not been studied in formal researches, but several case reports and anecdotes demonstrate this drug-nutrition interaction. However, alteration in the drug-free fraction result from parenteral nutrition-drug (i.e. antiepileptics) interactions may necessitate scrupulous reassessment of drug dosages in patients receiving these therapies. This reassessment may be particularly imperative in certain clinical situations characterized by hypoalbuminemia (e.g., burn patients).
AIM: The aim of this study was to evaluate the pharmacokinetics (PK) of N9-GP.
METHODS: Data from 41 previously treated haemophilia B patients, enrolled globally (16 adolescents/adults and 25 children; FIX activity ≤0.02 IU mL-1) with no history of FIX inhibitors, were included. N9-GP was administered once-weekly as 10 IU kg-1or 40 IU kg-1in adolescents/adults and 40 IU kg-1in children. Blood was sampled up to 168 h (1 week) post dose. Standard PK was estimated on the basis of plasma FIX activity vs. time (PK profiles) using non-compartmental methods. Furthermore, a population PK analysis and FIX activity predictions were performed.
RESULTS: Incremental recoveries were 0.02 (IU mL-1)/(IU kg-1) in both adolescents/adults and children. The extended half-life resulted in mean trough levels of 0.27 IU mL-1for adolescents/adults and 0.17 IU mL-1for children at steady-state after weekly dosing at 40 IU kg-1. The population PK analysis confirmed a mono-exponential decay in FIX activity and allowed for predictions of FIX activity for adolescents/adults above 0.15 IU mL-1at all times and 6.4 days week-1in children.
CONCLUSION: N9-GP has the potential to shift previously treated haemophilia B patients from a severe/moderate disease state into a mild- or non-haemophilic range for most of the dosing interval, which is expected to reduce the number of bleeding episodes.
SUMMARY: Background Nonacog beta pegol is a recombinant glycoPEGylated factor IX with an extended half-life, developed to improve care for patients with hemophilia B. Objectives To investigate the safety, efficacy and pharmacokinetics of nonacog beta pegol for the prophylaxis and treatment of bleeds in previously treated children with hemophilia B. Patients/Methods This phase 3 trial, paradigm(™) 5, enrolled and treated 25 children (aged ≤ 12 years) with hemophilia B (FIX ≤ 2%). Patients were stratified by age (0-6 years and 7-12 years), and received once-weekly prophylaxis with 40 IU kg(-1) nonacog beta pegol for 50 exposure days. Results No patient developed inhibitors, and no safety concerns were identified. Forty-two bleeds in 15 patients were reported to have been treated; the overall success rate was 92.9%, and most bleeds (85.7%) resolved after one dose. The median annualized bleeding rates (ABRs; bleeds per patient per year) were 1.0 in the total population, 0.0 in the 0-6-year group, and 2.0 in the 7-12-year group; the estimated mean ABRs were 1.44 in the total population, 0.87 in the 0-6-year group, and 1.88 in the 7-12-year group. For 22 patients who had previously been receiving prophylaxis, the estimated mean ABR was 1.38 versus a historical ABR of 2.51. Estimated mean steady-state FIX trough levels were 0.153 IU mL(-1) (0-6 years) and 0.190 IU mL(-1) (7-12 years). Conclusion Nonacog beta pegol was well tolerated in previously treated children with hemophilia B; a 40 IU kg(-1) dose provided effective once-weekly prophylaxis and hemostasis when bleeds were treated.