Displaying publications 101 - 120 of 284 in total

Abstract:
Sort:
  1. Banka S, Bennington A, Baker MJ, Rijckmans E, Clemente GD, Ansor NM, et al.
    Brain, 2022 Dec 19;145(12):4232-4245.
    PMID: 35139179 DOI: 10.1093/brain/awac049
    RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.
    Matched MeSH terms: Neurons
  2. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, et al.
    Am J Pathol, 2003 Nov;163(5):2127-37.
    PMID: 14578210 DOI: 10.1016/S0002-9440(10)63569-9
    A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels (Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR, Nipah Virus Pathology Working Group: Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002, 161:2153-2167). We describe here a golden hamster (Mesocricetus auratus) model that appears to reproduce the pathology and pathogenesis of acute human Nipah infection. Hamsters infected by intranasal or intraperitoneal routes died within 9 to 29 days or 5 to 9 days, respectively. Pathological lesions were most severe and extensive in the hamster brain. Vasculitis, thrombosis, and more rarely, multinucleated endothelial syncytia, were found in blood vessels of multiple organs. Viral antigen and RNA were localized in both vascular and extravascular tissues including neurons, lung, kidney, and spleen, as demonstrated by immunohistochemistry and in situ hybridization, respectively. Paramyxoviral-type nucleocapsids were identified in neurons and in vessel walls. At the terminal stage of infection, virus and/or viral RNA could be recovered from most solid organs and urine, but not from serum. The golden hamster is proposed as a suitable model for further studies including pathogenesis studies, anti-viral drug testing, and vaccine development against acute Nipah infection.
    Matched MeSH terms: Neurons/pathology; Neurons/ultrastructure; Neurons/virology
  3. Lew SY, Lim SH, Lim LW, Wong KH
    BMC Complement Med Ther, 2020 Nov 11;20(1):340.
    PMID: 33176761 DOI: 10.1186/s12906-020-03132-x
    BACKGROUND: Hericium erinaceus is a culinary and medicinal mushroom in Traditional Chinese Medicines. It has numerous pharmacological effects including immunomodulatory, anti-tumour, anti-microbial, anti-aging and stimulation of nerve growth factor (NGF) synthesis, but little is known about its potential role in negating the detrimental effects of oxidative stress in depression. The present study investigated the neuroprotective effects of H. erinaceus standardised aqueous extract (HESAE) against high-dose corticosterone-induced oxidative stress in rat pheochromocytoma (PC-12) cells, a cellular model mimicking depression.

    METHODS: PC-12 cells was pre-treated with HESAE for 48 h followed by 400 μM corticosterone for 24 h to induce oxidative stress. Cells in complete medium without any treatment or pre-treated with 3.125 μg/mL desipramine served as the negative and positive controls, respectively. The cell viability, lactate dehydrogenase (LDH) release, endogenous antioxidant enzyme activities, aconitase activity, mitochondrial membrane potentials (MMPs), intracellular reactive oxygen species (ROS) levels and number of apoptotic nuclei were quantified. In addition, HESAE ethanol extract was separated into fractions by chromatographic methods prior to spectroscopic analysis.

    RESULTS: We observed that PC-12 cells treated with high-dose corticosterone at 400 μM had decreased cell viability, reduced endogenous antioxidant enzyme activities, disrupted mitochondrial function, and increased oxidative stress and apoptosis. However, pre-treatment with HESAE ranging from 0.25 to 1 mg/mL had increased cell viability, decreased LDH release, enhanced endogenous antioxidant enzyme activities, restored MMP, attenuated intracellular ROS and protected from ROS-mediated apoptosis. The neuroprotective effects could be attributed to significant amounts of adenosine and herierin III isolated from HESAE.

    CONCLUSIONS: HESAE demonstrated neuroprotective effects against high-dose corticosterone-induced oxidative stress in an in vitro model mimicking depression. HESAE could be a potential dietary supplement to treat depression.

    Matched MeSH terms: Neurons/cytology; Neurons/drug effects*; Neurons/metabolism
  4. Awang MS, Abdullah JM, Abdullah MR, Tahir A, Tharakan J, Prasad A, et al.
    Med Sci Monit, 2007 Jul;13(7):CR330-2.
    PMID: 17599028
    Nerve conduction study is essential in the diagnosis of focal neuropathies and diffuse polyneuropathies. There are many factors that can affect nerve conduction velocity, and age is one of them. Most of the many studies of this effect, and the values from them, were on Caucasian subjects. Therefore, this study was designed to investigate the effect of age on conduction velocity among healthy Asian Malay subjects by analyzing its influence on the median, ulnar, and sural nerves.
    Matched MeSH terms: Motor Neurons/metabolism; Neurons, Afferent/metabolism
  5. Cacha LA, Poznanski RR
    J Integr Neurosci, 2014 Jun;13(2):253-92.
    PMID: 25012712 DOI: 10.1142/S0219635214400081
    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
    Matched MeSH terms: Neurons/physiology*
  6. Naish KR, Houston-Price C, Bremner AJ, Holmes NP
    Neuropsychologia, 2014 11;64:331-48.
    PMID: 25281883 DOI: 10.1016/j.neuropsychologia.2014.09.034
    Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity; (2) direction; and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.
    Matched MeSH terms: Mirror Neurons/physiology*
  7. Muthuraju S, Islam MR, Pati S, Jaafar H, Abdullah JM, Yusoff KM
    Int J Neurosci, 2015;125(9):686-92.
    PMID: 25180987 DOI: 10.3109/00207454.2014.961065
    Dopamine (DA) is one of the key neurotransmitters in the striatum, which is functionally important for a variety of cognitive and motor behaviours. It is known that the striatum is vulnerable to damage from traumatic brain injury (TBI). However, a therapeutic approach has not yet been established to treat TBI. Hence, the present work aimed to evaluate the ability of Normobaric hyperoxia treatment (NBOT) to recover dopaminergic neurons following a fluid percussion injury (FPI) as a TBI experimental animal model. To examine this, mice were divided into four groups: (i) Control, (ii) Sham, (iii) FPI and (iv) FPI+NBOT. Mice were anesthetized and surgically prepared for FPI in the striatum and immediate exposure to NBOT at various time points (3, 6, 12 and 24 h). Dopamine levels were then estimated post injury by utilizing a commercially available ELISA method specific to DA. We found that DA levels were significantly reduced at 3 h, but there was no reduction at 6, 12 and 24 h in FPI groups when compared to the control and sham groups. Subjects receiving NBOT showed consistent increased DA levels at each time point when compared with Sham and FPI groups. These results suggest that FPI may alter DA levels at the early post-TBI stages but not in later stages. While DA levels increased in 6, 12 and 24 h in the FPI groups, NBOT could be used to accelerate the prevention of early dopaminergic neuronal damage following FPI injury and improve DA levels consistently.
    Matched MeSH terms: Dopaminergic Neurons/metabolism*
  8. Moriya S, Ogawa S, Parhar IS
    Biochem Biophys Res Commun, 2013 Jun 14;435(4):562-6.
    PMID: 23669040 DOI: 10.1016/j.bbrc.2013.05.004
    Most vertebrates possess at least two gonadotropin-releasing hormone (GnRH) neuron types. To understand the physiological significance of the multiple GnRH systems in the brain, we examined three GnRH neuron type-specific transcriptomes using single-cell microarray analyses in the medaka (Oryzias latipes). A microarray profile of the three GnRH neuron types revealed five genes that are uniquely expressed in specific GnRH neuron types. GnRH1 neurons expressed three genes that are homologous to functionally characterised genes, GnRH2 neurons uniquely expressed one unnamed gene, and GnRH3 neurons uniquely expressed one known gene. These genes may be involved in the modulation or maintenance of each GnRH neuron type.
    Matched MeSH terms: Neurons/metabolism*
  9. Loh KB, Rahmat K, Lim SY, Ramli N
    Neurol India, 2011 Mar-Apr;59(2):266-9.
    PMID: 21483130 DOI: 10.4103/0028-3886.79143
    A "Hot Cross Bun" sign on T2-weighted MRI was described as a result of selective loss of myelinated transverse pontocerebellar fibers and neurons in the pontine raphe with preservation of the pontine tegmentum and corticospinal tracts (CST). However, neuropathologic studies showed contradicting results with no sparing of the CST. This is a pictorial and quantitative demonstration of the sign on diffusion tensor imaging and tractography, which provides the imaging evidence that is consistent with neuropathologic findings.
    Matched MeSH terms: Neurons/pathology
  10. Gnanasegaran N, Govindasamy V, Abu Kasim NH
    Int Endod J, 2016 Oct;49(10):937-49.
    PMID: 26354006 DOI: 10.1111/iej.12545
    AIM: To investigate whether dental pulp stem cells from carious teeth (DPSCs-CT) can differentiate into functional dopaminergic-like (DAergic) cells and provide an alternative cell source in regenerative medicine.

    METHODOLOGY: Dental pulp stem cells from healthy (DPSCs) and carious teeth (DPSCs-CT) were isolated from young donors. Both cell lines were expanded in identical culture conditions and subsequently differentiated towards DAergic-like cells using pre-defined dopaminergic cocktails. The dopaminergic efficiencies were evaluated both at gene and protein as well as at secretome levels.

    RESULTS: The efficiency of DPSCs-CT to differentiate into DAergic-like cells was not equivalent to that of DPSCs. This was further reflected in both gene and protein generation whereby key neuronal markers such as nestin, NURR1 and beta-III-tubulin were expressed significantly lower as compared to differentiated DPSCs (P 

    Matched MeSH terms: Dopaminergic Neurons/physiology*
  11. Tijjani Salihu A, Muthuraju S, Aziz Mohamed Yusoff A, Ahmad F, Zulkifli Mustafa M, Jaafar H, et al.
    Behav Brain Res, 2016 10 01;312:374-84.
    PMID: 27327104 DOI: 10.1016/j.bbr.2016.06.034
    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment.
    Matched MeSH terms: Neurons/pathology
  12. Chahal KS, Prakash A, Majeed AB
    Environ Toxicol Pharmacol, 2015 Jul;40(1):220-9.
    PMID: 26151868 DOI: 10.1016/j.etap.2015.06.002
    The current study has been designed to examine the effect of multifunctional drug therapy on carbofuran induced acute (2.187 mg/kg, s.c.) and sub-acute (0.2187 mg/kg, s.c.) neurotoxicity in male wistar rats. Drug treatment which includes nimodipine (Ca(2+) channel blocker), diazepam, ropinirole (dopamine agonist) and GSPE (antioxidant) was started 2h after carbofuran administration. Morris water maze was employed for aiming spatial memory. Narrow beam walk and rotarod were employed for testing motor functions. Brain acetylcholinesterase activity, thiobarbituric acid reactive species, nitrite, reduced glutathione, catalase levels, and mitochondrial complexes were also estimated. Carbofuran treatment resulted in significant development of cognitive and motor functions manifested as impairment in learning and memory along with increased thiobarbituric acid reactive species, nitrite levels and decreased acetylcholinesterase activity, reduced glutathione, catalase levels, and mitochondrial complexes. The standard antidote therapy (atropine) was not able to provide neuroprotection but was able to provide symptomatic relief. The multifunctional drug therapy attenuated carbofuran induced cognitive and motor dysfunction, acetylcholinesterase activity and other biochemical parameters. The triple combination in sub-acute study may be avoided in future as two drug combinations provide adequate neuroprotection. Thus it can be concluded that standard antidotal therapy may not provide neuroprotection while the multifunctional drug therapy offers neuroprotection against carbofuran and may dramatically increase survival and life quality.
    Matched MeSH terms: Neurons/drug effects*
  13. Vazifehkhah Ghaffari B, Kouhnavard M, Aihara T, Kitajima T
    Biomed Res Int, 2015;2015:135787.
    PMID: 25960999 DOI: 10.1155/2015/135787
    Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (I(Ca)) and calcium-dependent potassium (I(KCa)) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (I(h)) and I(Ca) (in association with I(KCa)) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that I h and I(KCa) affect the resonant properties of PD neurons. However, I(Ca) only has an amplifying effect on the resonance amplitude of these neurons.
    Matched MeSH terms: Neurons/metabolism*
  14. Yeong SO, Subramaniam K, Vrbová G
    Neuroreport, 1998 Apr 20;9(6):1085-8.
    PMID: 9601672
    The motoneurones with axons in the common peroneal nerve (CPN) of the rat and monkey were examined using retrograde labelling with horseradish peroxidase (HRP). In both species, the CPN motoneurone pool was localized in the dorsolateral part of the ventral horn of the spinal cord. In the rat, the labelled motoneurones were located between the L3 and L6 spinal segments whereas in the monkey, they extended from the caudal end of L4 to the L6 spinal segments. In both species the majority of the labelled neurones were located within the L5 segment. The mean number of the CPN motoneurones in the rat and monkey was 458 and 1148, respectively. A bimodal size distribution of motoneurones was found in both species.
    Matched MeSH terms: Motor Neurons/ultrastructure*
  15. Tay CH, Jek WT
    Med J Malaya, 1972 Jun;26(4):272-7.
    PMID: 5069417
    Matched MeSH terms: Motor Neurons*
  16. Al Abbar A, Nordin N, Ghazalli N, Abdullah S
    Tissue Cell, 2018 Dec;55:13-24.
    PMID: 30503056 DOI: 10.1016/j.tice.2018.09.004
    Induced pluripotent stem cells (iPSCs) have great potentials for regenerative medicine. However, serious concerns such as the use of the viral-mediated reprogramming strategies and exposure of iPSCs to animal products from feeder cells and serum-containing medium have restricted the application of iPSCs in the clinics. Therefore, the generation of iPSCs with minimal viral integrations and in non-animal sourced and serum-free medium is necessary. In this report, a polycistronic lentiviral vector carrying Yamanaka's factors was used to reprogram mouse fibroblasts into iPSCs in feeder- and xeno-free culture environment. The generated iPSCs exhibited morphology and self-renewal properties of embryonic stem cells (ESCs), expression of specific pluripotent markers, and potentials to differentiate into the three-major distinct specialized germ layers in vitro. The iPSCs were also shown to have the potential to differentiate into neural precursor and neurons in culture, with greater than 95% expression of nestin, Pax6 and βIII-tubulin. This body of work describes an alternative method of generating iPSCs by using polycistronic lentiviral vector that may minimize the risks associated with viral vector-mediated reprogramming and animal derived products in the culture media.
    Matched MeSH terms: Neurons/cytology
  17. Lim FT, Ogawa S, Parhar IS
    Brain Res, 2016 11 01;1650:60-72.
    PMID: 27568467 DOI: 10.1016/j.brainres.2016.08.033
    Injury to neuronal tissues in the central nervous system (CNS) of mammals results in neural degeneration and sometime leads to loss of function, whereas fish retain a remarkable potential for neuro-regeneration throughout life. Thus, understanding the mechanism of neuro-regeneration in fish CNS would be useful to improve the poor neuro-regenerative capability in mammals. In the present study, we characterized a neuro-regenerative process in the brain of a cichlid, tilapia, Oreochromis niloticus. Morphological observations showed that the damaged brain region (habenula) successfully regrew and reinnervated axonal projections by 60 days post-damage. A fluorescent carbocyanine tracer, DiI tracing revealed a recovery of the major neuronal projection from the regenerated habenula to the interpenduncular nucleus by 60 days post-damage. TUNEL assay showed a significant increase of apoptotic cells (~234%, P<0.01) at one day post-damage, while the number of bromodeoxyuridine (BrdU)-positive proliferative cells were significantly increased (~92%, P<0.05) at 7 days post-damage compared with sham-control fish. To demonstrate a potential role of apoptotic activity in the neuro-regeneration, effects of degenerative neural tissue on cell proliferation were examined in vivo. Implantation of detached neural but not non-neural tissues into the cranial cavity significantly (P<0.01) increased the number of BrdU-positive cells nearby the implantation regions at 3 days after the implantation. Furthermore, local injection of the protein extract and cerebrospinal fluid collected from injured fish brain significantly induced cell proliferation in the brain. These results suggest that factor(s) derived from apoptotic neural cells may play a critical role in the neuro-regeneration in teleost brain.
    Matched MeSH terms: Neurons/metabolism
  18. Ullah M, Mansor O, Ismail ZI, Kapitonova MY, Sirajudeen KN
    J Anat, 2007 Apr;210(4):428-38.
    PMID: 17428204
    The spinal nucleus of the accessory nerve (SNA) comprises the group of somata (perikarya) of motor neurons that supply the sternocleidomastoid and trapezius muscles. There are many conflicting views regarding the longitudinal extent and topography of the SNA, even in the same species, and these disagreements prompted the present investigation. Thirty Sprague-Dawley rats (15 males, 15 females) were used. The SNA was localized by retrograde axonal transport of horseradish peroxidase. Longitudinally, the SNA was found to be located in the caudal part (caudal 0.9-1.2 mm) of the medulla oblongata, the whole lengths of cervical spinal cord segments C1, C2, C3, C4, C5 and rostral fourth of C6. In the caudal part of the medulla oblongata, the SNA was represented by a group of perikarya of motor neurons lying immediately ventrolateral to the pyramidal fibres that were passing dorsolaterally after their decussation. In the spinal cord, the motor neuronal somata of the SNA were located in the dorsomedial and central columns at C1, in the dorsomedial, central and ventrolateral columns at C2 and in the ventrolateral column only at C3, C4, C5 and rostral quarter of C6. The perikarya of motor neurons supplying the sternocleidomastoid were located in the caudal part (caudal 0.9-1.2 mm) of the medulla oblongata ventrolateral to the pyramidal fibres that were passing dorsolaterally after their decussation. They were also located in the dorsomedial and central columns at C1, in the dorsomedial, central and ventrolateral columns at C2 and only in the ventrolateral column at the rostral three-quarters of C3. The perikarya of motor neurons supplying the trapezius muscle were located in the ventrolateral column only in the caudal three-quarters of C2, the whole lengths of C3, C4 and C5, and in the rostral quarter of C6.
    Matched MeSH terms: Motor Neurons/cytology
  19. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, et al.
    J Neurochem, 2019 10;151(2):139-165.
    PMID: 31318452 DOI: 10.1111/jnc.14829
    The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
    Matched MeSH terms: Neurons/metabolism
  20. Ogawa S, Parhar I
    PMID: 32982977 DOI: 10.3389/fendo.2020.00586
    Gonadotropin-releasing hormone (GnRH) is a reproductive neuropeptide, which controls vertebrate reproduction. In most vertebrates, there are more than two GnRH orthologs in the brain. In cichlid fish, the Nile tilapia (Oreochromis niloticus), GnRH1 is the primary hypophysiotropic hormone, while GnRH2 and GnRH3 are non-hypophysiotropic but neuromodulatory in function. Hypophysiotropic GnRH neurons are thought to inter-communicate, while it remains unknown if hypophysiotropic and non-hypophysiotropic GnRH systems communicate with each other. In the present study, we examined interrelationship between three GnRH types using specific antibodies raised against their respective GnRH associated peptide (GAP) sequence. Double-immunofluorescence labeling coupled with confocal microscopy revealed that in sexually mature males, GnRH-GAP1-immunoreactive (-ir) processes are in proximities of GnRH-GAP3-ir cell somata in the terminal nerve, while GnRH-GAP1-ir cell somata were also accompanied by GnRH-GAP3-ir processes in the preoptic area. However, such interaction was not seen in immature males. Further, there was no interaction between GnRH-GAP2 and GnRH-GAP1 or GnRH-GAP3 neurons. Single cell gene expression analysis revealed co-expression of multiple GnRH receptor genes (gnrhr1 and gnrhr2) in three GnRH-GAP cell types. In mature males, high levels of gnrhr2 mRNA were expressed in GnRH-GAP1-ir cells. In immature males, gnrhr1 and gnrhr2 mRNAs are highly expressed in GnRH-GAP3-ir cells. These results suggest heterologous interactions between the three GnRH-GAP cell types and their potential functional interaction during different reproductive stages.
    Matched MeSH terms: Neurons/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links