Displaying publications 101 - 120 of 145 in total

Abstract:
Sort:
  1. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
    Matched MeSH terms: Heterozygote
  2. Choong ML, Koay ES, Khaw MC, Aw TC
    Hum. Hered., 1999 Jan;49(1):31-40.
    PMID: 9858855
    The allele frequencies for the apolipoprotein B (apo B) 5'-Ins/Del and 3'-VNTR polymorphisms varied significantly (p < 0.01) among Singaporeans of Chinese, Malay and Indian descent. We calculated the unbiased expected heterozygosities for the 5'-Ins/Del polymorphism as 0.3357, 0.1984 and 0.2418, and for the 3'-VNTR as 0.5980, 0.5260 and 0.6749, respectively, in the Chinese, Malays and Indians. Compared to heterozygosities reported for other populations, the Singaporeans differed from most Caucasians in having significantly lower values but were closely related to other non-Caucasians. Thirteen alleles, with a bimodal distribution, were observed at the 3'-VNTR polymorphic locus; the alleles occurring most frequently among the Chinese and Malays were of 35 or 53 repeats, and among the Indians, of 37 or 47 repeats. The Del allele was associated with elevated serum cholesterol (p = 0.023), LDL-cholesterol (LDL-C) (p = 0.001) in the Chinese, and apo B (p = 0.007) in the Indians. Likewise, the larger 3'-VNTR alleles (> 41 repeats) were associated with raised cholesterol (p = 0.018), LDL-C (p = 0.025), and triglyceride (p = 0.001) in the Chinese. The two polymorphisms were not in significant linkage disequilibrium (D = -0.0029, p = 0.494) in the three ethnic groups.
    Matched MeSH terms: Heterozygote
  3. Mohamed R, Tan CT, Wong NW
    Med J Malaysia, 1994 Mar;49(1):49-52.
    PMID: 8057991
    The clinical course of 18 patients with Wilson's disease is reported. There were 13 males and five females of whom one is Malay. The prevalence of Wilson's disease in Malaysia is probably the same as elsewhere. Being a genetic syndrome, the genetic carrier rate for Wilson's disease is probably lower amongst the Malays. At diagnosis, the clinical signs were predominantly hepatic in 10 patients, neurological in five patients with three asymptomatic cases. All patients were commenced on penicillamine but poor compliance was observed in many patients. Two patients defaulted follow-up and seven patients died. Out of the nine surviving patients, only four are well with no clinical symptoms.
    Matched MeSH terms: Heterozygote
  4. Hamanaka K, Imagawa E, Koshimizu E, Miyatake S, Tohyama J, Yamagata T, et al.
    Am J Hum Genet, 2020 04 02;106(4):549-558.
    PMID: 32169168 DOI: 10.1016/j.ajhg.2020.02.011
    De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.
    Matched MeSH terms: Heterozygote
  5. Laosombat V, Fucharoen SP, Panich V, Fucharoen G, Wongchanchailert M, Sriroongrueng W, et al.
    Am J Hematol, 1992 Nov;41(3):194-8.
    PMID: 1415194
    A total of 103 beta thalassemia genes from 78 children (45 with Hb E/beta thalassemia, 8 with beta thalassemia heterozygotes, and 25 with homozygous beta thalassemia) were analyzed using dot-blot hybridization of the polymerase chain reaction-amplified DNA and direct DNA sequencing. Nine mutations were characterized in 98/103 (95%) of beta thalassemia alleles, of which six (a 4 bp deletion in codons 41-42, a G-C transition at position 5 of IVS-1, A-G transition at codon 19, an A-T transition at codon 17, an A-G transition at position -28 upstream of the beta globin gene, a G-T transition at position 1 of IVS-1), accounted for 92%. The spectrum of beta thalassemia mutations in Chinese Thai is similar to that reported among the Chinese from other parts of the world. The distribution of beta thalassemia mutations in Muslim Thai is similar to that reported among Malaysians. The most common beta thalassemia mutation in Thai and Chinese Thai patients is the frameshift mutation at codons 41-42, in comparison with the Muslim Thai in whom the G-C transition at position 5 of the IVS-1 mutation predominates. The heterogeneity of molecular defects causing beta thalassemia should aid in the planning of a prenatal diagnosis program for beta thalassemia in the South of Thailand.
    Matched MeSH terms: Heterozygote
  6. Deng L, Hoh BP, Lu D, Fu R, Phipps ME, Li S, et al.
    Hum Genet, 2014 Sep;133(9):1169-85.
    PMID: 24916469 DOI: 10.1007/s00439-014-1459-8
    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration history in Southeast Asia.
    Matched MeSH terms: Heterozygote
  7. George E, Teh LK, Tan J, Lai MI, Wong L
    Pathology, 2013 01;45(1):62-5.
    PMID: 23222244 DOI: 10.1097/PAT.0b013e32835af7c1
    AIMS: Classical carriers of β-thalassaemia are identified by a raised HbA2 level. Earlier studies indicated that the Filipino β-deletion has high raised HbA2 levels. The introduction of automated high performance liquid chromatography (HPLC) for thalassaemia screening is an important advance in technology for haematology laboratories. The BioRad Variant II Hb analyser is a common instrument used to quantify HbA2 levels in thalassaemia screening. This study aimed to determine HbA2 levels in carriers of Filipino β-mutation using the BioRad Variant II Hb analyser.

    METHODS: The Filipino β-deletion was identified using gap-polymerase chain reaction (PCR) in the parents of transfusion dependent β-thalassaemia patients who were homozygous for the Filipino β-deletion in the indigenous population of Sabah, Malaysia. Hb subtypes were quantified on the BioRad Variant II Hb analyser. Concurrent α-thalassaemia was identified by multiplex gap-PCR for deletions and amplification refractory mutation system (ARMS)-PCR for non-deletional mutations.

    RESULTS: The mean HbA2 level for Filipino β-thalassaemia trait was 5.9 ± 0.47 and with coinheritance of α-thalassaemia was 6.3 ± 0.44 (-α heterozygous) and 6.7 ± 0.36 (-α homozygous). The HbA2 levels were all >4% in keeping with the findings of classical β-thalassaemia trait and significantly higher than levels seen in non-deletional forms of β-thalassaemia.

    CONCLUSION: The HbA2 level measured on the BioRad Variant II Hb analyser was lower than the level in the first description of the Filipino β-thalassaemia. β-thalassaemia trait with coinheritance of α-thalassaemia (-α) is associated with significantly higher HbA2 level.

    Matched MeSH terms: Heterozygote
  8. Rasool AH, Ghazali DM, Abdullah H, Halim AS, Wong AR
    Microvasc Res, 2009 Sep;78(2):230-4.
    PMID: 19481100 DOI: 10.1016/j.mvr.2009.05.005
    Post occlusive skin reactive hyperemia (PORH) is a tool used to assess microcirculation. Endothelial nitric oxide synthase (eNOS) mediates nitric oxide (NO) production; polymorphism of the eNOS gene may affect response to the PORH process. This study aims to determine whether eNOS G894T gene polymorphism affects response to skin PORH. 230 normotensive male and females between 18 and 40 years participated in this cross-sectional study. 170 subjects were of the homozygous GG genotype, whereas 60 were of the GT genotype. Skin PORH was performed by occlusion of the upper arm at 200 mm Hg for 3 min. Skin perfusion and temperature were monitored before, during and after occlusion release using the laser Doppler fluximetry. There were no significant differences between genotypes in their baseline blood pressure, serum cholesterol, BMI and age. Maximum change in perfusion after occlusion release (PORHmax) for the GG and GT genotypes were not significantly different at 50.15+/-1.29 vs. 47.92+/-2.17 AU; ANCOVA, p=0.351. Peak perfusion (PORHpeak) were also not significantly different between the two genotypes (61.23+/-1.36 vs. 57.72+/-2.32 AU; p=0.169). Minimum baseline perfusion were however higher in the GG compared to the GT genotype (10.83+/-0.29 vs. 9.61+/-0.50, p=0.029). We conclude that microvascular reactivity, assessed by change in perfusion after temporary ischemia was not significantly different between the GG and GT genotypes of the eNOS G894T gene. eNOS 894T allele carriers however, have lower baseline perfusion compared to the homozygous G894 allele carrier.
    Matched MeSH terms: Heterozygote
  9. Javanmard A, Azadzadeh N, Esmailizadeh AK
    Vet Res Commun, 2011 Mar;35(3):157-67.
    PMID: 21327517 DOI: 10.1007/s11259-011-9467-9
    The objective of this study was to investigate association between GDF9 and BMP15 gene polymorphism and litter size in fat-tailed sheep, a total of 97 mature ewes from four breeds (Afshari=19; Baluchi=18; Makui=30 and Mehraban=30) were genotyped for the BMP15 HinfI and GDF9 HhaI polymorphisms by PCR-RFLP technique. The highest and lowest mutant allele frequencies were found in Makui (0.27) and Afshari (0.10) sheep for the BMP15 gene and in Afshari (0.24) and Mehraban (0.18) sheep for the GDF9 gene, respectively. Litter size was significantly influenced by genotype of the ewe for two genes (P < 0.01). Heterozygous genotypes for both loci showed higher litter size than homozygous genotypes (P < 0.01). None of the individuals carried homozygous genotype for both of the GDF9 and BMP15 variants in these breeds. The individuals carrying the mutant allele for one of the investigated candidate gene still showed fertile phenotype. Thus, existence of homozygosity at one of the BMP15 and GDF9 variant is not probably able to block normal hormonal pathway of reproduction in fat-tailed sheep.
    Matched MeSH terms: Heterozygote
  10. Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lilyquist J, et al.
    Nat Commun, 2016 Apr 27;7:11375.
    PMID: 27117709 DOI: 10.1038/ncomms11375
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
    Matched MeSH terms: Heterozygote
  11. Patel VL, Busch EL, Friebel TM, Cronin A, Leslie G, McGuffog L, et al.
    Cancer Res, 2020 Feb 01;80(3):624-638.
    PMID: 31723001 DOI: 10.1158/0008-5472.CAN-19-1840
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3' region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
    Matched MeSH terms: Heterozygote
  12. Ainoon O, Alawiyah A, Yu YH, Cheong SK, Hamidah NH, Boo NY, et al.
    PMID: 12971572
    Neonatal screening for G6PD deficiency has long been established in many countries. The aim of the study was to determine whether the routine semiquantitative fluorescent spot test could detect all cases of G6PD deficiency, including those cases with partial deficiency (residual red cell G6PD activity between 20-60% of normal). We compared the results of G6PD screening by the semiquantitative fluorescent spot test and quantitative G6PD activity assay on a group of 976 neonates and 67 known female heterozygotes. The values for mean G6PD activity of G6PD-normal neonates and 293 healthy adult females were determined. There was no significant difference in the mean normal G6PD activity between the two racial groups in the neonates (669 Malays, 307 Chinese) and in the 293 healthy adult females (150 Malays, 143 Chinese) group. The values for the upper limits of total deficiency (20% of normal residual activity) for neonates and adult females were 2.92 U/gHb and 1.54 U/gHb, respectively. The upper limits of partial deficiency (60% of normal residual activity) were 8.7 U/gHb and 4.6 U/gHb respectively. The prevalence of G6PD deficiency among the male neonates was 5.1% (26) by both the fluorescent spot test and the enzyme assay method. The G6PD activity levels of all 26 cases of G6PD-deficient male neonates were < 20% normal (severe enzyme deficiency). In the female neonate group, the frequency of G6PD deficiency was 1.3% (6 of 472) by the fluorescent spot test and 9.35% (44 of 472) by enzyme assay. The 6 cases diagnosed as deficient by the fluorescent spot test showed severe enzyme deficiency (< 2.92 U/gHb). The remaining 38 female neonates had partial enzyme deficiency and all were misdiagnosed as normal by the fluorescent spot test. In the female heterozygote group, G6PD deficiency was diagnosed in 53% (35 of 67) by enzyme assay and in 7.5% (4 of 67) of cases by the fluorescent spot test. The 4 cases detected by fluorescent spot test had severe enzyme deficiency (<1.6 U/gHb). The remaining 31 (46.3%) cases, diagnosed as normal by fluorescent spot test, showed partial G6PD deficiency. In conclusion, we found that the semiquantitative fluorescent spot test could only diagnose cases of total G6PD deficiency and misclassified the partially-deficient cases as normal. In this study, the overall prevalence of G6PD deficiency was 3.28% by the semiquantitative fluorescent spot test and 7.17% by enzyme assay. This means that 3.9% of G6PD-deficient neonates were missed by the routine fluorescent spot test and they were found to be exclusively females. This study demonstrates a need to use a method that can correctly classify female heterozygotes with partial G6PD deficiency. The clinical implication is that these individuals may be at risk of the hemolytic complication of G6PD deficiency.
    Matched MeSH terms: Heterozygote
  13. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, et al.
    Nat Genet, 2015 Feb;47(2):164-71.
    PMID: 25581431 DOI: 10.1038/ng.3185
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
    Matched MeSH terms: Heterozygote
  14. Al-abd NM, Mahdy MA, Al-Mekhlafi AM, Snounou G, Abdul-Majid NB, Al-Mekhlafi HM, et al.
    PLoS One, 2013;8(7):e67853.
    PMID: 23861823 DOI: 10.1371/journal.pone.0067853
    The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen.
    Matched MeSH terms: Heterozygote
  15. Gopalai AA, Lim SY, Aziz ZA, Lim SK, Tan LP, Chong YB, et al.
    Ann Acad Med Singap, 2013 May;42(5):237-40.
    PMID: 23771111
    INTRODUCTION: The G2385R and R1628P LRRK2 gene variants have been associated with an increased risk of Parkinson's disease (PD) in the Asian population. Recently, a new LRRK2 gene variant, A419V, was reported to be a third risk variant for PD in Asian patients. Our objective was to investigate this finding in our cohort of Asian subjects.

    MATERIALS AND METHODS: Eight hundred and twenty-eight subjects (404 PD patients, and 424 age and gender-matched control subjects without neurological disorders) were recruited. Genotyping was done by Taqman® allelic discrimination assay on an Applied Biosystems 7500 Fast Real-Time PCR machine.

    RESULTS: The heterozygous A419V genotype was found in only 1 patient with PD, compared to 3 in the control group (0.4% vs 1.3%), giving an odds ratio of 0.35 (95% confidence interval (CI), 0.01 to 3.79; P = 0.624).

    CONCLUSION: A419V is not an important LRRK2 risk variant in our Asian cohort of patients with PD. Our data are further supported by a literature review which showed that 4 out of 6 published studies reported a negative association of this variant in PD.

    Matched MeSH terms: Heterozygote
  16. Azma RZ, Othman A, Azman N, Alauddin H, Ithnin A, Yusof N, et al.
    Malays J Pathol, 2012 Jun;34(1):57-62.
    PMID: 22870600
    Haemoglobin Constant Spring (Hb CS) mutation and single gene deletions are common underlying genetic abnormalities for alpha thalassaemias. Co-inheritance of deletional and non-deletional alpha (alpha) thalassaemias may result in various thalassaemia syndromes. Concomitant co-inheritance with beta (beta) and delta (delta) gene abnormalities would result in improved clinical phenotype. We report here a 33-year-old male patient who was admitted with dengue haemorrhagic fever, with a background history of Grave's disease, incidentally noted to have mild hypochromic microcytic red cell indices. Physical examination revealed no thalassaemic features or hepatosplenomegaly. His full blood picture showed hypochromic microcytic red cells with normal haemoglobin (Hb) level. Quantitation of Hb using high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) revealed raised Hb F, normal Hb A2 and Hb A levels. There was also small peak of Hb CS noted in CE. H inclusions was negative. Kleihauer test was positive with heterocellular distribution of Hb F among the red cells. DNA analysis for alpha globin gene mutations showed a single -alpha(-3.7) deletion and Hb CS mutation. These findings were suggestive of compound heterozygosity of Hb CS and a single -alpha(-3.7) deletion with a concomitant heterozygous deltabeta thalassaemia. Co-inheritance of Hb CS and a single -alpha(-3.7) deletion is expected to result at the very least in a clinical phenotype similar to that of two alpha genes deletion. However we demonstrate here a phenotypic modification of alpha thalassemia presumptively as a result of co-inheritance with deltabeta chain abnormality as suggested by the high Hb F level.
    Matched MeSH terms: Heterozygote
  17. Khositseth S, Bruce LJ, Walsh SB, Bawazir WM, Ogle GD, Unwin RJ, et al.
    QJM, 2012 Sep;105(9):861-77.
    PMID: 22919024 DOI: 10.1093/qjmed/hcs139
    Distal renal tubular acidosis (dRTA) caused by mutations of the SLC4A1 gene encoding the erythroid and kidney isoforms of anion exchanger 1 (AE1 or band 3) has a high prevalence in some tropical countries, particularly Thailand, Malaysia, the Philippines and Papua New Guinea (PNG). Here the disease is almost invariably recessive and can result from either homozygous or compound heterozygous SLC4A1 mutations.
    Matched MeSH terms: Heterozygote
  18. Low CF, Mohd Tohit ER, Chong PP, Idris F
    Arch Gynecol Obstet, 2011 Jun;283(6):1255-60.
    PMID: 20552210 DOI: 10.1007/s00404-010-1548-4
    Diabetes and pregnancy can be associated in two ways: pregnancy that occurs in women who are already diabetic (diabetes of pre-gestational origin); and diabetes that occur in women who are already pregnant [gestational diabetes mellitus (GDM) (O'sullivan 1961)]. Patients with previous GDM history have higher risk of developing diabetes outside of pregnancy. Accumulating literature had suggested that adiponectin plays a role in the pathophysiology of this metabolic syndrome, and several of the common single nucleotide polymorphisms (SNP) in adiponectin gene have been identified in type 2 diabetes. Thus, one of the commonly found SNP was studied to determine its association with GDM.
    Matched MeSH terms: Heterozygote Detection
  19. Thong MK, Fietz M, Nicholls C, Lee MH, Asma O
    J Inherit Metab Dis, 2009 Dec;32 Suppl 1:S41-4.
    PMID: 19165618 DOI: 10.1007/s10545-009-1031-1
    There are few reports of congenital disorders of glycosylation (CDGs) in the Asian population, although they have been reported worldwide. We identified a Malaysian infant female at 2 days of life with CDG type Ia. The diagnosis was suspected on the basis of inverted nipples and abnormal fat distribution. She had cerebellar hypoplasia and developed coagulopathy, hypothyroidism and severe pericardial effusion and died at 7 months of life. The diagnosis was supported by abnormal serum transferrin isoform pattern that showed elevated levels of the disialotransferrin isoform and trace levels of the asialotransferrin isoform. Enzyme testing of peripheral leukocytes showed decreased level of phosphomannomutase (PMM) activity (0.6 nmol/min per mg protein, normal range 1.6-6.2) and a normal level of phosphomannose isomerase activity (19 nmol/min per mg protein, normal range 12-25), indicating a diagnosis of CDG type Ia. Mutation study of the PMM2 gene showed the patient was heterozygous for both the common p.R141H (c.422T>A) mutation and a novel sequence change in exon 7, c.618C>A. The latter change is predicted to result in the replacement of the highly conserved phenylalanine residue at position 206 with a leucine residue (p.F206L) and occurs in the same codon as the previously reported p.F206S mutation. Analysis of 100 control chromosomes has shown that the p.F206L sequence change is not present, making it highly likely that this change is functionally important. To the best of our knowledge, this is the first report of CDG in the Malay population. Prenatal diagnosis was successfully performed in a subsequent pregnancy for this family.
    Matched MeSH terms: Heterozygote
  20. Wee YC, Tan KL, Chow TW, Yap SF, Tan JA
    J Obstet Gynaecol Res, 2005 Dec;31(6):540-6.
    PMID: 16343256 DOI: 10.1111/j.1447-0756.2005.00333.x
    AIM: Interactions between different determinants of alpha-thalassemia raises considerable problems, particularly during pregnancies where antenatal diagnosis is necessary. This study aims to determine the different types of deletional alpha-thalassemia and Hemoglobin Constant Spring (HbCS), and their frequency in Malays, Chinese and Indians in Malaysia.
    METHODS: DNA from 650 pregnant women from the Antenatal Clinic of the University of Malaya Medical Center in Kuala Lumpur, Malaysia who showed mean cell volume < or =89 fL and/or mean cell hemoglobin < or =28 pg were analyzed for the double alpha-globin gene South-East Asian deletion (--SEA), the -alpha3.7 and -alpha4.2 single alpha-globin gene deletions and HbCS.
    RESULTS: One hundred and three (15.8%) of the pregnant women were confirmed as alpha-thalassemia carriers: 25 (3.8%) were alpha-thalassemia-1 carriers with the --SEA/alphaalpha genotype, 64 (9.8%) were heterozygous for the -alpha3.7 rightward deletion (-alpha3.7/alphaalpha), four (0.6%) were heterozygous for the -alpha4.2 leftward deletion (-alpha4.2/alphaalpha), nine (1.4%) were heterozygous for HbCS (alphaCSalpha/alphaalpha) and one (0.2%) was compound heterozygous with the -alpha3.7/alphaCSalpha genotype. The double alpha-globin gene --SEA deletion was significantly higher in the Chinese (15%) compared to the Malays (2.5%) and not detected in the Indians studied. The -alpha3.7 deletion was distributed equally in the three races. HbCS and -alpha4.2 was observed only in the Malays.
    CONCLUSION: The data obtained gives a better understanding of the interactions of the different alpha-thalassemia determinants in the different ethnic groups, thus enabling more rapid and specific confirmation of alpha-thalassemia in affected pregnancies where antenatal diagnosis is necessary.
    Study site: Antenatal clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Heterozygote Detection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links