Displaying publications 81 - 100 of 116 in total

Abstract:
Sort:
  1. Che Mat MF, Abdul Murad NA, Ibrahim K, Mohd Mokhtar N, Wan Ngah WZ, Harun R, et al.
    Int J Oncol, 2016 Dec;49(6):2359-2366.
    PMID: 27840905 DOI: 10.3892/ijo.2016.3755
    Glioblastoma multiforme (GBM) is an aggressive brain tumor and most patients have poor prognosis. Despite many advances in research, there has been no significant improvement in the patient survival rate. New molecular therapies are being studied and RNA interference (RNAi) therapy is one of the promising approaches to improve prognosis and increase survival in patients with GBM. We performed a meta‑analysis of five different microarray datasets and identified 460 significantly upregulated genes in GBM. Loss‑of‑function screening of these upregulated genes using LN18 cells was performed to identify the significant target genes for glioma. Further investigations were performed using siRNA in LN18 cells and various functional assays were carried out on the selected candidate gene to understand further its role in GBM. We identified PROS1 as a candidate gene for GBM from the meta‑analysis and RNAi screening. Knockdown of PROS1 in LN18 cells significantly induced apoptosis compared to siPROS1‑untreated cells (p<0.05). Migration in cells treated with siPROS1 was reduced significantly (p<0.05) and this was confirmed with wound-healing assay. PROS1 knockdown showed substantial reduction in cell invasion up to 82% (p<0.01). In addition, inhibition of PROS1 leads to decrease in cellular proliferation by 18%. Knockdown of PROS1 in LN18 cells caused activation of both of the extrinsic and intrinsic apoptotic pathways. It caused major upregulation of FasL which is important for death receptor signaling activation and also downregulation of GAS6 and other members of TAM family of receptors. PROS1 may play an important role in the development of GBM through cellular proliferation, migration and invasion as well as apoptosis. Targeting PROS1 in GBM could be a novel therapeutic strategy in GBM treatment.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/biosynthesis
  2. Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, et al.
    J Chin Med Assoc, 2021 03 01;84(3):248-254.
    PMID: 33009209 DOI: 10.1097/JCMA.0000000000000438
    BACKGROUND: Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance.

    METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.

    RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.

    CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.

    Matched MeSH terms: Protein-Tyrosine Kinases/drug effects*
  3. Zhou Q, Cheung YB, Jada SR, Lim WT, Kuo WL, Gray JW, et al.
    Cancer Biol Ther, 2006 Nov;5(11):1445-9.
    PMID: 17102595
    AIM: The purpose of this study was to test the hypothesis if longer CA dinucleotide repeats are more common in the Asian population and also to gain insights into the interplay between the CA dinucleotide repeats and the frequencies of EGFR gene expression and amplifications as this might have therapeutic implications with regards to treatment with tyrosine kinase inhibitors.

    MATERIALS AND METHODS: The EGFR intron 1 polymorphism was analysed in three distinct healthy Asian subjects, namely, Chinese (N = 96), Malays (N = 98) and Indians (N = 100). Comparative genomic hybridisation was performed to investigate for changes in DNA copy number in relation to the polymorphic CA dinucleotide repeats in breast tumor tissues (N = 22).

    RESULTS: The frequency of short alleles with 14 and 15 CA repeats were most common in the Asian populations and significantly higher than those reported for Caucasians. The frequency of 20 CA repeats was 5%, almost 13-fold lower than previous reports. EGFR amplifications were detected in 23% and 11% of breast tumor tissues harboring short and long CA repeats, respectively.

    CONCLUSION: Our results show that the frequency of alleles encoding for short CA dinucleotide repeats is common in Asian populations. EGFR expression and amplification levels were also higher in Asian breast tumor tissues with short CA dinucleotide repeats. These findings suggest that the EGFR intron 1 polymorphism may influence response to treatment with tyrosine kinase inhibitors in breast cancer patients and further studies are warranted.

    Matched MeSH terms: Protein-Tyrosine Kinases/antagonists & inhibitors
  4. Shehu D, Alias Z
    Protein J, 2018 06;37(3):261-269.
    PMID: 29779193 DOI: 10.1007/s10930-018-9774-x
    Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
    Matched MeSH terms: Tyrosine
  5. Hooi Yeen Yap, Jack Bee Chook, Sin Yeang Teow
    MyJurnal
    ntroduction: Nasopharyngeal carcinoma (NPC) is a prevalent cancer among human population in Southern China, Hong Kong and Southeast Asia. In Malaysia, NPC is the fourth most common cancer in both sexes, predominantly in the Chinese. Epstein-Barr virus (EBV) infection is known to be highly associated with NPC. Fibroblast growth factor receptor-4 (FGFR4) is part of the family of tyrosine kinase receptors that regulate cell survival, differentiation and pro-liferation. The binding of FGFR4 ligands such as fibroblasts growth factors (FGFs) has been shown to activate various oncogenic signalling pathway including MAPK, Ras and PI3K-Akt pathways. In the past, FGFR4 has been shown to promote tumorigenesis and tumour progression in various cancers such as liver, colon, breast and pancreatic and gastric cancers. However, its role in NPC establishment and pathogenesis is under-explored. This study aimed to evaluate the FGFR4 expression in NPC using various cell lines and its potential as a therapeutic target for NPC treat-ment by gene silencing. Methods: The basal FGFR4 level of NPC (EBV-positive: C666-1 and EBV-negative: HONE1 and HK1) and nasopharyngeal epithelial (NPE) normal (NP69 and NP460) cell lines was determined by western blot analysis and RT-qPCR. FGFR4 level at different time points (0, 24, 48, and 72 hours) in HONE1 and C666-1 cell lines were determined by western blot analysis. Luminescence-based assay was performed to determine the cell prolifer-ation of NPC cells in correlation with the FGFR4 expression. NPC cells were then treated with the optimised FGFR4 siRNA or FGFR inhibitor, BLU-9931 and the silencing/ inhibition of FGFR4 expression was confirmed by western blot analysis. The effect of FGFR4 inhibition on the cell proliferation and aggressiveness of NPC cells was then investigat-ed through wound healing assay and invasion marker analysis. Results: Out of the five tested cell lines, HONE1 and C666-1 highly expressed FGFR4, NP69 showed very low expression while HK1 and NP460 did not express FGFR4. In the time-point study, the FGFR4 level of HONE1 and C666-1 peaked at 24-48 hours which is the exponential phase of cells. Following that, the FGFR4 level decreased corresponding to the decreased cell growth rate due to the nutrient deprivation. siRNA experiments showed that 6.25nM of four siRNAs (5, 6, 9 and 10) could effectively target and silence the FGFR4 expression of HONE1, but not in C666-1 even up to 250nM was tested. When BLU-9931 was used, only modest inhibition was observed in both cells at 3uM. Compared to the untreated control, FGFR4-inhibited HONE1 exhibited decreased cell proliferation rate. Cell migration and invasion capabilities of HONE1 were also significantly reduced following the FGFR4 silencing, suggesting the potential of utilising FGFR4 as the therapeutic target. Conclusion: FGFR4 is highly expressed in C666-1 (EBV-positive) and HONE1 (initially EBV-positive, but lost EBV genome in subsequent in vitro passage) NPC cells, but not in EBV-negative HK1 NPC cell and normal NPE cells. FGFR4 gene silencing effectively inhibited the cell proliferation, migration and invasive potentials of NPC cell line. These findings highlight the therapeutic value of targeting FGFR4 for NPC treatment. Further investigations are war-ranted to reveal the molecular mechanism and the possible role of EBV in regulating FGFR4 pathway.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  6. Lee JS, Choi SJ, Kim L, Park IS, Han JY, Kim JM, et al.
    Malays J Pathol, 2019 Aug;41(2):213-222.
    PMID: 31427559
    INTRODUCTION: Anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL) with a non-common pattern can be diagnostic challenging. Pathologists can be unavoidably and unintentionally blind to non-descript tumor cells in a lymphohistiocytic- (LH) or small-cell (SC)-pattern. We report a case of primary systemic ALK+ ALCL with a SC pattern that presented as secondary gastric lesions with a mixed LH and SC pattern that was masqueraded as inflammatory lesions.

    CASE REPORT: A 34-year-old woman with intractable epigastric pain was referred to have repeated endoscopy with biopsy. She was found to multiple gastric erosions and nodules that were diagnosed as inflammatory lesions both endoscopically and histologically. Meanwhile, she developed an acute onset of severe back pain associated with a pathologic compression fracture in the T3 thoracic vertebral body. Imaging studies disclosed a disseminated systemic disease involving abdominopelvic lymph nodes and cervical and thoracic vertebral bodies. The needle biopsy of the pelvic lymph node disclosed diffuse proliferation of monomorphic small round cells that were diffusely positive for CD30 and ALK. A diagnosis of ALK+ ALCL with a monomorphic SC pattern was rendered.

    DISCUSSION: A retrospective review of the gastric biopsies with the aid of immunohistochemistry enabled us to recognise the presence of lymphomatous infiltrates with a mixed LH and SC pattern in every piece of gastric biopsies that were repeatedly misdiagnosed as inflammatory lesions. This case illustrates a significant diagnostic pitfall of the LH- and SC-patterns in ALK+ ALCL, in which the tumour cells featuring lymphoid, plasmacytoid or histiocytoid appearance can be masqueraded as inflammatory cells.

    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  7. Zakaria Z, Zulkifle MF, Wan Hasan WAN, Azhari AK, Abdul Raub SH, Eswaran J, et al.
    Onco Targets Ther, 2019;12:7749-7756.
    PMID: 31571924 DOI: 10.2147/OTT.S214611
    Background: Epidermal growth factor receptor (EGFR) is a member of the ErbB family of tyrosine kinase receptor proteins that plays important roles in tumour cell survival and proliferation. EGFR has been reported to be overexpressed in up to 78% of triple-negative breast cancer (TNBC) cases suggesting it as a potential therapeutic target. The clinical trials of anti-EGFR agents in breast cancer showed low response rates. However, a subgroup of patients demonstrated response to EGFR inhibitors highlighting the necessity to stratify patients, who might benefit from effective combination therapy that could include anti EGFR-agents. Population variability in EGFR expression warrants systematic evaluation in specific populations.

    Purpose: To study EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort to determine the possibility of using anti-EGFR combinatorial therapy for this population.

    Patients and methods: In this study, we evaluated 58 cases of Malaysian TNBC patient samples for EGFR gene copy number alteration and EGFR protein overexpression using fluorescence in-situ hybridization (FISH) and immunohistochemistry (IHC) methods, respectively.

    Results: EGFR protein overexpression was observed in about 30% while 15.5% displayed high EGFR copy number including 5.17% gene amplification and over 10% high polysomy. There is a positive correlation between EGFR protein overexpression and gene copy number and over expression of EGFR is observed in ten out of the 48 low copy number cases (20.9%) without gene amplification.

    Conclusion: This study provides the first glimpse of EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort emphasising the need for the nationwide large scale EGFR expression evaluation in Malaysia.

    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  8. Angelopoulou E, Paudel YN, Julian T, Shaikh MF, Piperi C
    Mol Neurobiol, 2021 Apr;58(4):1372-1391.
    PMID: 33175322 DOI: 10.1007/s12035-020-02201-z
    The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
    Matched MeSH terms: Tyrosine
  9. Makhtar SM, Husin A, Baba AA, Ankathil R
    J Genet, 2018 Sep;97(4):835-842.
    PMID: 30262695
    Imatinib mesylate (IM), a well-established gold standard drug in the treatment of chronic myeloid leukaemia (CML), is a synthetic tyrosine kinase inhibitor. Despite excellent efficacy, a significant number of patients on IM therapy develop resistance to IM. Currently, great focus has been laid on the effect of interindividual pharmacogenetic variability on IM treatment responses. IM uptake is mediated by the hOCT1 protein encoded by the solute carrier 22 gene (SLC22A1). The current study investigated the impact of few single-nucleotide polymorphisms (SNPs) of SLC22A1 on mediating resistance and/or good response to IM among 278 Malaysian CML patients (146 IM-resistant group and 132 IM good response group) undergoing IM therapy on 400 mg daily. Our results showed that the allelic frequencies of heterozygous (CG) and homozygous variant (GG) genotypes of SLC22A1 C480G were significantly higher in the IM-resistant group compared with the IM good response group (41.8% versus 30.3% and 10.9% versus 4.5% with P values of 0.047 and 0.048, respectively). On evaluating the association of genotypes with risk of IM resistance development, heterozygous (CG) and homozygous (GG) variant genotypes showed significantly higher risk for developing resistance to IM treatment with odds ratio (OR): 1.901 (95% confidence interval (CI): 1.142-3.163, P = 0.013) and 3.324 (95% CI: 1.235-8.947, P = 0.017), respectively. Two SNPs and two insertions/deletions were detected in exon 7 of SLC22A1. For exon 7, 1222AA carriers together with the presence of both the 8-bp insertion and 3-bp deletion, and M420del alleles showed higher possibility of developing resistance towards IMtreatment. Our results warrant the need of genotyping this SNP in terms of modulating IM treatment in CML patients.
    Matched MeSH terms: Protein-Tyrosine Kinases
  10. Amir Hashim NA, Ab-Rahim S, Wan Ngah WZ, Nathan S, Ab Mutalib NS, Sagap I, et al.
    Bioimpacts, 2021;11(1):33-43.
    PMID: 33469506 DOI: 10.34172/bi.2021.05
    Introduction:
    The serum metabolomics approach has been used to identify metabolite biomarkers that can diagnose colorectal cancer (CRC) accurately and specifically. However, the biomarkers identified differ between studies suggesting that more studies need to be performed to understand the influence of genetic and environmental factors. Therefore, this study aimed to identify biomarkers and affected metabolic pathways in Malaysian CRC patients.
    Methods:
    Serum from 50 healthy controls and 50 CRC patients were collected at UKM Medical Centre. The samples were deproteinized with acetonitrile and untargeted metabolomics profile determined using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOFMS, Agilent USA). The data were analysed using Mass Profiler Professional (Agilent, USA) software. The panel of biomarkers determined were then used to identify CRC from a new set of 20 matched samples.
    Results:
    Eleven differential metabolites were identified whose levels were significantly different between CRC patients compared to normal controls. Based on the analysis of the area under the curve, 7 of these metabolites showed high sensitivity and specificity as biomarkers. The use of the 11 metabolites on a new set of samples was able to differentiate CRC from normal samples with 80% accuracy. These metabolites were hypoxanthine, acetylcarnitine, xanthine, uric acid, tyrosine, methionine, lysoPC, lysoPE, citric acid, 5-oxoproline, and pipercolic acid. The data also showed that the most perturbed pathways in CRC were purine, catecholamine, and amino acid metabolisms.
    Conclusion:
    Serum metabolomics profiling can be used to identify distinguishing biomarkers for CRC as well as to further our knowledge of its pathophysiological mechanisms.
    Matched MeSH terms: Tyrosine
  11. Melati Khalid, Mohamad Aris Mohd Moklas
    MyJurnal
    Aromatic L-amino acid decarboxylase deficiency (AADC) is a rare autosomal recessive pediatric neurotransmitter disease. To date it remains poorly understood mainly due to an absence of a disease model. The dopaminergic neuroblastoma cell SH-SY5Y was chosen to develop our AADC deficiency model. These cells are not native dopamine synthesizers. Objective: To develop a dopamine-producing cellular model of AADC deficiency using SH-SY5Y neuroblastoma cells. Methods: Dopamine pathway proteins were identified with Western Blotting. Dopaminergic differentiation was attempted using all-trans retinoic acid (ATRA) with dopamine detection via HPLC-ECD post alumina extraction. Treatment with L-DOPA provided SH-SY5Y with excess precursor. RT-PCR was used to determine the expression of markers of mature neurons. Results: Western Blot screening identified AADC, dopamine β-hydroxylase and tyrosine hyrdoxylase proteins, indicative of a dopaminergic pathway. ATRA was unsuccessful in producing dopamine from the cells. L-DOPA treatment however, generated dopamine first visible as a HPLC-ECD peak 30 minutes post-incubation. Prior to this, SH-SY5Y dopamine synthesis from L-DOPA has never been documented. This de novo synthesis is then inhibited using benserazide to form our AADC deficiency cell model. RT-PCR showed that SH-SY5Y cells express markers of mature neurons in its ‘native’ state and is not affected by L-DOPA and benserazide treatment. This cell model will potentially benefit many areas of AADC deficiency research. Conclusion: SH-SY5Y cells produced HPLC-ECD measureable amounts of dopamine with the addition of L-DOPA. Our model of AADC deficiency is generated by quelling the dopamine production with Benserazide.
    Matched MeSH terms: Tyrosine
  12. Chia, Yoke Yin, Ton, So Ha
    Malays J Nutr, 2006;12(1):67-78.
    MyJurnal
    The objective of the study was to quantify and to profile the amino acids content in urine samples. The amino acids content in urine was determined in 162 individuals (62 young non-vegetarians aged 15-45 years, 24 elderly non-vegetarians aged 46-70 years, 40 young vegetarians and 36 elderly vegetarians) by high performance liquid chromatography (HPLC). The most common amino acids detected in the young and elderly individuals on vegetarian and non-vegetarian diets were phenylalanine, threonine, arginine and asparagine, while leucine, aspartic acid and alanine were not found in any urine samples in both groups. Isoleucine was not detected in the urine of vegetarians. The concentrations of the majority of essential amino acids were between 0.10 - 2.00 mgl24hrs except for histidine which had a range of 4.1 - 5.0 mgl24hrs. The concentrations of non-essential amino acids varied. Proline, glycine and tyrosine concentrations were between 0.10 - 1.00 mg/24hrs, while cysteine, glutamine, glutamic acid and cystine concentrations were between 11.0 - 21.0 mg124hrs. Asparagine and hydroxy-proline had a range of 0.10 - 5.00 mg/24hrs, while serine and arginine ranged between 31.0 - 50.0 mg124hrs. Isoleucine and serine were not detected in elderly vegetarians while histidine, glycine, glutamic acid and hydroxy-proline were not detected in elderly non-vegetarians. Isoleucine, glycine and hydroxy proline were detected in young non-vegetarians but not in young vegetarians. The levels of amino acids showed no significant statistical differences between young vegetarians and non-vegetarians as well as between elderly vegetarians and non-vegetarians. Phenylalanine, threonine and trypthophan were commonly detected in the lacto-ovo and lacto vegetarians, while valine, cysteine, arginine and asparagine were commonly detected in vegans. In conclusion, except for isoleucine, general differences were seen in urinary amino acid excretions between vegetarians and non-vegetarians even though the differences were statistically not significant. Therefore lacto-ovo diets could be nutritionally adequate as the nutrients were substituted by dairy or plant products.
    Matched MeSH terms: Tyrosine
  13. Thau, Wilson Lym Yon, Henry, Erle Stanley, Janna Ong Abdullah
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic
    acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 µM galactose and 100
    µM tyrosine supplemented with 600 µM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 µM galactose and 50 µM tyrosine with 200 µM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative
    T. semidecandra transformants was verified by PCR amplification with specific primers.
    Matched MeSH terms: Tyrosine
  14. Tan, B.H., Azhar, M.E.
    MyJurnal
    Channa striatus (“haruan”) fish destined for fillet preparation was subjected to two freezing treatments, freezing with distilled water (FW) or freezing directly without distilled water (DF). Fish that was freshly processed without freezing served as control (C). Fillet yield (%) was in the range 33.8% to 35.3% and the highest yield was recorded in FW samples. Whole Fillet Powder (WFP) was prepared from the fillets through low temperature vacuum oven drying (50°C) and its composition and physicochemical properties were assessed. There was no significant difference in moisture and protein contents of all samples (p > 0.05). All WFP were generally dark in colour with whiteness indices ranging from 55.23 - 63.98. The redness (a*) values were 4.33, 11.12, 8.83 whilst the yellowness (b*) were 19.31, 23.04, 21.20 for C, WFP-FW and WFP-DF respectively. WFPs were generally high in histidine, arginine, threonine and tyrosine when compared to egg whites and these (except histidine) and other amino acids (serine, glycine, methionine and phenylalanine) were significantly higher (p < 0.05) in WFP-FW compared to other samples. Overall, freezing treatments affected the composition and physicochemical properties of WFPs.
    Matched MeSH terms: Tyrosine
  15. Candlish J, Chandra N
    Biochem. J., 1967 Mar;102(3):767-73.
    PMID: 16742493
    1. A skin lesion was made in rats by dorsal incision and the insertion of a polythene tube. 2. Over a period of 25 days after wounding, assays were performed for ascorbic acid, DNA, hydroxyproline, methionine, tryptophan, tyrosine and free amino acids in the lesion tissue. 3. The neutral-salt-soluble proteins of the lesion tissue were fractionated on DEAE-Sephadex, with the separation of fibrinogen and gamma-globulin from a serum protein fraction. 4. Over a period of 20 days after wounding, in wounded rats and in controls, assays were conducted for: ascorbic acid in lens and liver, hydroxyproline, soluble protein, methionine and water in muscle and tendon, and free amino acids in muscle. 5. Relative to controls there was a decrease in lens and liver ascorbic acid, a rise in tendon hydroxyproline, a rise in muscle free amino acids, a fall in muscle protein and a rise in tendon and muscle water.
    Matched MeSH terms: Tyrosine
  16. Siti-Aishah, M.A., Salwati, S., Idrus, M., Rahimah, R., Salmi, A., Leong, C.F., et al.
    Medicine & Health, 2008;3(1):69-74.
    MyJurnal
    Anaplastic large cell lymphoma (ALCL) is a rare tumour, accounting for approximately 3% of adult non-Hodgkin lymphomas.1 Primary systemic ALCL frequently involves both lymph nodes and extranodal sites. A 44-year-old woman presented with a firm, mobile mass in the left iliac fossa region. Ultrasound findings showed a well defined inhomogenous soft tissue mass, measuring 4x4x2.6cm in the deep subcutaneous region. Histopathological examination revealed that the mass was infiltrated by large lymphoid cells with marked nuclear atypia including kidney-shaped nuclei. These neoplastic cells expressed anaplastic lymphoma kinase (ALK) (both nuclear & cytoplasmic staining), CD30 and EMA but not for T-cell (CD45RO and CD3), and B-cell (CD20 & CD79α) markers. Fluorescence in situ hybridization (FISH) analysis showed a t(2;5)(p23;q35) chromosomal translocation. Subsequently the patient developed shortness of the breath and a thoracic computed tomography (CT) scan showed a mass encasing the right upper lobe bronchus. She also had bilateral axillary lymph nodes, measuring 1 cm in diameter (biopsy was not done). The mediastinum and endobronchial region did not show any abnormalities. She received 6 cycles of CHOP chemotherapy and remained disease free 2 years after diagnosis. ALCL, rarely present as a soft tissue tumour and this disease should be included as a differential diagnosis of any soft tissue mass.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  17. Kuan JW, Melaine Michael S
    Med J Malaysia, 2018 04;73(2):78-85.
    PMID: 29703870 MyJurnal
    OBJECTIVES: There are very few published chronic myeloid leukaemia (CML) epidemiology studies in South-East Asia and no representative from Malaysia.

    METHODS: This is a cross-sectional study of adult CML patients (citizen) in a single but representative centre in southern Sarawak.

    RESULTS: Total 79 patients (Malay 39%, Chinese 30.4%, Iban 17.7%, Bidayuh 12.7%) were identified from the databases. Median age at diagnosis was younger, 40, compared to developed countries due to population structure. M:F ratio was higher, 2.6:1 compared to other countries 1.3-1.7:1. Majority presented at chronic phase (89.5%), low/intermediate risk score (80%) and started imatinib (96%) as first line tyrosine kinase inhibitor (TKI), which 40% of them switched to other TKI due to intolerance (17%) and failure (including disease progression)/not achieving major molecular response (83%). Quantitative polymerase chain reaction (qPCR) assessment after three months of TKI treatment had higher positive predictive value to predict Imatinib failure, 75%, than qPCR assessment after six months of TKI treatment, 58%. Presenting phase, symptoms, signs and laboratory data were like most countries. Estimated prevalence and incidence of CML in southern Sarawak was 69.2/1,000,000 population at the Year 2016 (similar to most developing countries) and 8.0/1,000,000 population per year at the Year 2011-2016 (similar to most countries), respectively. The incidence increased with age and was lowest among Iban, 12.8 and highest among Chinese, 19.5, which was 4x higher than Chinese in China. The prevalence of different BCR-ABL1 transcript type was like other Asia countries CONCLUSION: Significant epidemiological differences on M:F ratio and ethnic groups compared to other countries warrant further study.

    Matched MeSH terms: Protein-Tyrosine Kinases
  18. Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR
    Asian Pac J Cancer Prev, 2018 Jun 25;19(6):1585-1590.
    PMID: 29936783
    Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and
    progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways.
    Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of
    PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/
    ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated
    with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were
    treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively.
    Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation
    status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in
    K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased
    in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed
    higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to
    imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
    Matched MeSH terms: Protein-Tyrosine Kinases
  19. Poh ME, Liam CK, Rajadurai P, Chai CS
    J Thorac Dis, 2018 Jul;10(7):E560-E563.
    PMID: 30174934 DOI: 10.21037/jtd.2018.06.122
    We report the first case of epithelial-to-mesenchymal transition (EMT) as the cause of acquired resistance to the second-generation EGFR-tyrosine kinase inhibitor (TKI), afatinib in a patient with advanced non-small cell lung cancer (NSCLC) harboring a sensitizing EGFR mutation. Patients with EGFR-mutant NSCLC inevitably develop acquired resistance while on EGFR-TKI treatment. EMT which renders cancer cells more invasive and migratory is one of the mechanisms of acquired resistance to EGFR-TKIs and correlates with a poor prognosis. Possible therapeutic strategies in patients with EMT include blocking M2 muscarinic receptor signalling, targeting EMT with histone deacetylase inhibitors such as entinostat and MEK-inhibitors such as selumetinib, inhibition of microRNAs, immunotherapy and inhibiting fibroblast growth factor receptor-1.
    Matched MeSH terms: Protein-Tyrosine Kinases
  20. Karim ME, Shetty J, Islam RA, Kaiser A, Bakhtiar A, Chowdhury EH
    Pharmaceutics, 2019 Feb 20;11(2).
    PMID: 30791612 DOI: 10.3390/pharmaceutics11020089
    Inorganic nanoparticles hold great potential in the area of precision medicine, particularly for treating cancer owing to their unique physicochemical properties, biocompatibility and improved pharmacokinetics properties compared to their organic counterparts. Here we introduce strontium sulfite nanoparticles as new pH-responsive inorganic nanocarriers for efficient transport of siRNAs into breast cancer cells. We employed the simplest nanoprecipitation method to generate the strontium sulfite nanoparticles (SSNs) and demonstrated the dramatic roles of NaCl and d-glucose in particle growth stabilization in order to produce even smaller nanosize particles (Na-Glc-SSN) with high affinity towards negatively charged siRNA, enabling it to efficiently enter the cancer cells. Moreover, the nanoparticles were found to be degraded with a small drop in pH, suggesting their potential capability to undergo rapid dissolution at endosomal pH so as to release the payload. While these particles were found to be nontoxic to the cells, they showed higher potency in facilitating cancer cell death through intracellular delivery and release of oncogene-specific siRNAs targeting ros1 and egfr1 mRNA transcripts, than the strontium sulfite particles prepared in absence of NaCl and d-glucose, as confirmed by growth inhibition assay. The mouse plasma binding analysis by Q-TOF LC-MS/MS demonstrated less protein binding to smaller particles of Na-Glc-SSNs. The biodistribution studies of the particles after 4 h of treatment showed Na-Glc-SSNs had less off-target distribution than SSNs, and after 24 h, all siRNAs were cleared from all major organs except the tumors. ROS1 siRNA with its potential therapeutic role in treating 4T1-induced breast tumor was selected for subsequent in vivo tumor regression study, revealing that ROS1 siRNA-loaded SSNs exerted more significant anti-tumor effects than Na-Glc-SSNs carrying the same siRNA following intravenous administration, without any systemic toxicity. Thus, strontium sulfite emerged as a powerful siRNA delivery tool with potential applications in cancer gene therapy.
    Matched MeSH terms: Protein-Tyrosine Kinases
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links